Menú secundario

Artículos SCI


Cost-effective routes for catalytic biomass upgrading

Jin, W; Pastor-Perez, L; Yu, J; Odriozola, JA; Gu, S; Reina, TR
Current Opinion in Green and Sustainable Chemistry, 23 (2020) 1-9
Química de Superficies y Catálisis


Catalytic hydrodeoxygenation (HDO) is a fundamental and promising route for bio-oil upgrading to produce petroleum-like hydrocarbon fuels or chemical building blocks. One of the main challenges of this technology is the demand of high-pressure H-2, which poses high costs and safety concerns. Accordingly, developing cost-effective routes for biomass or bio-oil upgrading without the supply of commercial H-2 is essential to implement the HDO at commercial scale. This article critically reviewed the very recent studies relating to the novel strategies for upgrading the biofeedstocks with 'green' H-2 generated from renewable sources. More precisely, catalytic transfer hydro-genation/hydrogenolysis, combined reforming and HDO, combined metal hydrolysis and HDO, water-assisted in-situ HDO and nonthermal plasma technology and self-supported hydrogenolysis are reviewed herein. Current challenges and research trends of each strategy are also proposed aiming to motivate further improvement of these novel routes to become competitive alternatives to conventional HDO technology.

Junio, 2020 | DOI: 10.1016/j.cogsc.2019.12.008

New biomorphic filters to face upcoming particulate emissions policies: A review of the FIL-BIO-DIESEL project

Orihuela, MP; Chacartegui, R; Martinez-Fernandez, J
Energy, 201 (2020) 117577
Materiales de Diseño para la Energía y Medioambiente


With a high number of diesel vehicles worldwide, particulate emission control is an urgent issue with a global impact, from the health of citizens to commercial future of this technology in some transport segments. Particulate filters are widely used in automotive engines to comply emissions regulations, but current technologies have room for improvement as they add additional backpressure in the exhaust system, and efficient on-board regeneration process is challenging.
The Fil-Bio-Diesel Project is a R&D initiative to improve current particle filtration systems, based on the development of novel biomorphic substrates. By replicating the biologic tissue of a wood precursor, a biomorphic silicon carbide with hierarchic orthotropic microstructure can be produced. The porosity, the pore size, and pore orientation of this bioceramic material can be tailored through the selection of a suitable precursor, widening the initially narrow relationship between filtration efficiency and pressure drop that characterizes granular ceramic materials. In this paper the methodology and main results of the Fil-Bio-Diesel Project are presented. This work shows the peculiar advantages of biomorphic silicon carbide through several experimental studies. The results show the potential of this novel filter substrate to be used in future particulate abatement systems.

Junio, 2020 | DOI: 10.1016/

5-Hydroxymethyl-2-Furfural Oxidation Over Au/Ce(x)Zr(1-x)O(2)Catalysts

Megias-Sayago, C; Bonincontro, D; Lolli, A; Ivanova, S; Albonetti, S; Cavani, F; Odriozola, JA
Frontiers in Chemistry, 8 (2020) 461
Química de Superficies y Catálisis


A series of gold catalysts supported on pure CeO2, ZrO2, and two different Ce-Zr mixed oxides have been prepared and tested in the 5-hydroxymethyl-2-furfural oxidation reaction. All catalysts show high catalytic activity (100% conversion) and important selectivity (27-41%) to the desired product i.e., 2,5-furandicarboxylic acid at low base concentration. Products selectivity changes with the support nature as expected, however, the observed trend cannot be related neither to gold particle size, nor to catalyst reducibility and oxygen mobility. An important relation between the FDCA selectivity and the support textural properties is observed, conducing to the general requirement for optimal pore size for this reaction.

Junio, 2020 | DOI: 10.3389/fchem.2020.00461

Supported Porous Nanostructures Developed by Plasma Processing of Metal Phthalocyanines and Porphyrins

Obrero, JM; Filippin, AN; Alcaire, M; Sanchez-Valencia, JR; Jacob, M; Matei, C; Aparicio, FJ; Macias-Montero, M; Rojas, TC; Espinos, JP; Saghi, Z; Barranco, A; Borras, A
Frontiers in Chemistry, 8 (2020) 520
Nanotecnología en Superficies y Plasma - Tribología y Protección de Superficies


The large area scalable fabrication of supported porous metal and metal oxide nanomaterials is acknowledged as one of the greatest challenges for their eventual implementation in on-device applications. In this work, we will present a comprehensive revision and the latest results regarding the pioneering use of commercially available metal phthalocyanines and porphyrins as solid precursors for the plasma-assisted deposition of porous metal and metal oxide films and three-dimensional nanostructures (hierarchical nanowires and nanotubes). The most advanced features of this method relay on its ample general character from the point of view of the porous material composition and microstructure, mild deposition and processing temperature and energy constrictions and, finally, its straightforward compatibility with the direct deposition of the porous nanomaterials on processable substrates and device-architectures. Thus, taking advantage of the variety in the composition of commercially available metal porphyrins and phthalocyanines, we present the development of metal and metal oxides layers including Pt, CuO, Fe2O3, TiO2, and ZnO with morphologies ranging from nanoparticles to nanocolumnar films. In addition, we combine this method with the fabrication by low-pressure vapor transport of single-crystalline organic nanowires for the formation of hierarchical hybrid organic@metal/metal-oxide and @metal/metal-oxide nanotubes. We carry out a thorough characterization of the films and nanowires using SEM, TEM, FIB 3D, and electron tomography. The latest two techniques are revealed as critical for the elucidation of the inner porosity of the layers.

Junio, 2020 | DOI: 10.3389/fchem.2020.00520

Surface Modification of Rutile TiO2 with Alkaline-Earth Oxide Nanoclusters for Enhanced Oxygen Evolution

Rhatigan, S; Sukola, E; Nolan, M; Colon, G
ACS Applied Nano Materials, 3 (2020) 6017-6033
Materiales de Diseño para la Energía y Medioambiente


The oxygen (O-2) evolution reaction (OER) is accepted as the bottleneck in the overall water splitting and has seen intense interest. In this work, we prepared rutile TiO2 modified with nanoclusters of alkaline-earth metal oxides for the OER. Photocatalytic OER was performed over rutile TiO2 surface-modified with alkaline-earth oxide nanoclusters, namely, CaO and MgO. The O-2 evolution activity is notably enhanced for MgO-modified systems at low loadings and a combination of characterization and first-principles simulations allows interpretation of the role of the nanocluster modification in improving the photocatalytic performance of alkaline-earth-modified rutile TiO2. At such low loadings, the nanocluster modifiers would be small, and this facilitates a close correlation with theoretical models. Structural and surface characterizations of the modified systems indicate that the integrity of the rutile phase is maintained after modification. However, charge-carrier separation is strongly affected by the presence of surface nanoclusters. This improved performance is related to surface features such as higher ion dispersion and surface hydroxylation, which are also discussed with first-principles simulations. The modified systems are reducible so that Ti3+ ions will be present. Water dissociation is favorable at cluster and interfacial sites of the stoichiometric and reduced modified surfaces. Pathways to water oxidation at interfacial sites of reduced MgO-modified rutile TiO2 are identified, requiring an overpotential of 0.68 V. In contrast, CaO-modified systems required overpotentials in excess of 0.85 V for the reaction to proceed.

Junio, 2020 | DOI: 10.1021/acsanm.0c01237

Recent progress on the enhancement of photocatalytic properties of BiPO4 using π–conjugated materials

Naciri, Y., Hsini, A., Ajmal, Z., Navio, J.A., Bakiz, B., Albourine, A., Ezahri, M., Benlhachemi, A.
Advances in Colloid and Interface Science, 280 (2020) 102160
Fotocatálisis Heterogénea: Aplicaciones


Semiconductor photocatalysis is regarded as most privileged solution for energy conversion and environmental application. Recently, photocatalysis methods using bismuth-based photocatalysts, such as BiPO4, have been extensively investigated owing to their superior efficacy regarding organic pollutant degradation and their further mineralization into CO2 and H2O. It is well known that BiPO4 monoclinic phase exhibited better photocatalytic performance compared to Degussa (Evonik) P25 TiO2 in term of ultraviolet light driven organic pollutants degradation. However, its wide band gap, poor adsorptive performance and large size make BiPO4 less active under visible light irradiation. However, extensive research works have been conducted in the past with the aim of improving visible light driven BiPO4 activity by constructing a series of heterostructures, mainly coupled with π-conjugated architecture (e.g., conductive polymer, dye sensitization and carbonaceous materials). However, a critical review of modified BiPO4 systems using π-conjugated materials has not been published to date. Therefore, this current review article was designed with the aim of presenting a brief current state-of-the-art towards synthesis methods of BiPO4 in the first section, with an especial focuses onto its crystal-microstructure, optical and photocatalytic properties. Moreover, the most relevant strategies that have been employed to improve its photocatalytic activities are then addressed as the main part of this review. Finally, the last section presents ongoing challenges and perspectives for modified BiPO4 systems using π–conjugated m

Junio, 2020 | DOI: 10.1016/j.cis.2020.102160

Electrochemically Exfoliated Graphene-Like Nanosheets for Use in Ceramic Nanocomposites

Poyato, R; Verdugo, R; Munoz-Ferreiro, C; Gallardo-Lopez, A
Materials, 13 (2020) 11
Reactividad de Sólidos


In this work, the synthesis of graphene-like nanosheets (GNS) by an electrochemical exfoliation method, their microstructural characterization and their performance as fillers in a ceramic matrix composite have been assessed. To fabricate the composites, 3 mol % yttria tetragonal zirconia (3YTZP) powders with 1 vol % GNS were processed by planetary ball milling in tert-butanol to enhance the GNS distribution throughout the matrix, and densified by spark plasma sintering (SPS). According to a thorough Raman analysis and SEM observations, the electrochemically exfoliated GNS possessed less than 10 graphene layers and a lateral size lower than 1 mu m. However, they contained amorphous carbon and vacancy-like defects. In contrast the GNS in the sintered composite exhibited enhanced quality with a lower number of defects, and they were wavy, semi-transparent and with very low thickness. The obtained nanocomposite was fully dense with a homogeneous distribution of GNS into the matrix. The Vickers hardness of the nanocomposite showed similar values to those of a monolithic 3YTZP ceramic sintered in the same conditions, and to the reported ones for a 3YTZP composite with the same content of commercial graphene nanosheets.

Junio, 2020 | DOI: 10.3390/ma13112656

Local Rearrangement of the Iodide Defect Structure Determines the Phase Segregation Effect in Mixed-Halide Perovskites

Tiede, DO; Calvo, ME; Galisteo-Lopez, JF; Miguez, H
Journal of Physical Chemistry Letters, 11 (2020) 4911-4916
Materiales Ópticos Multifuncionales


Mixed-halide perovskites represent a particularly relevant case within the family of lead-halide perovskites. Beyond their technological relevance for a variety of optoelectronic devices, photoinduced structural changes characteristic of this type of material lead to extreme photophysical changes that are currently the subject of intense debate. Herein we show that the conspicuous photoinduced phase segregation characteristic of these materials is primarily the result of the local and metastable rearrangement of the iodide sublattice. A local photophysical study comprising spectrally resolved laser scanning confocal microscopy is employed to find a correlation between the defect density and the dynamics of photoinduced changes, which extend far from the illuminated region. We observe that iodide-rich regions evolve much faster from highly defective regions. Also, by altering the material composition, we find evidence for the interplay between the iodide-related defect distribution and the intra- and interdomain migration dynamics giving rise to the complexity of this process.

Junio, 2020 | DOI: 10.1021/acs.jpclett.0c01127

Chemistry and Electrocatalytic Activity of Nanostructured Nickel Electrodes for Water Electrolysis

Lopez-Fernandez, E; Gil-Rostra, J; Espinos, JP; Gonzalez-Elipe, AR; Consuegra, AD; Yubero, F
ACS Catalysis, 10 (2020) 6159-6170
Nanotecnología en Superficies y Plasma


Herein we have developed nanostructured nickel-based electrode films for anion exchange membrane water electrolysis (AEMWE). The electrodes were prepared by magnetron sputtering (MS) in an oblique angle configuration and under various conditions aimed at preparing metallic, oxide, or oxyhydroxide films. Their electrochemical analysis has been complemented with a thorough physicochemical characterization to determine the effect of microstructure, chemical state, bilayer structure, and film thickness on the oxygen evolution reaction (OER). The maximum electrocatalytic activity was found for the metallic electrode, where analysis by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) demonstrated that the active catalytic phase at the surface after its electrochemical conditioning is a kind of oxidized nickel oxide/hydroxide layer with the thickness of a few nanometers. Electrochemical impedance spectroscopy analysis of these steady-state working electrodes supports that the enhanced performance of the metallic nickel anode vs other chemical states resides in the easier electron transfer through the electrode films and the various interlayers built up during their fabrication and activation. The long-term steady-state operation of the anodes and their efficiency for water splitting was proved in a full-cell AEMWE setup incorporating magnetron-sputtered metallic nickel as the cathode. This work proves that MS is a suitable technique to prepare active, stable, and low-cost electrodes for AEMWE and the capacity of this technique to control the chemical state of the electrocatalytically active layers involved in the OER.

Junio, 2020 | DOI: 10.1021/acscatal.0c00856

Reductant atmospheres during slow pyrolysis of cellulose: First approach to obtaining efficient char -based catalysts in one pot

Santos, JL; Centeno, MA; Odriozola, JA
Journal of Analytical and Applied Pyrolysis, 148 (2020) 104821
Química de Superficies y Catálisis


Char based metallic (Pd-Au-Ru-Pt/C) catalysts have drawn increasing research interest due to their versatility in biomass related industrial reactions. Recent studies dealing with the synthesis of char-based catalysts in one single step (one-pot) use reductant atmospheres for biomass pyrolysis. In this work, the influence of the use of a reductant N2/H2 atmosphere on the physicochemical properties of the resulting chars was evaluated in comparison with the use of an inert N2 atmosphere. Specifically, the fundamental parameter of the pyrolysis process, the temperature, was evaluated in the 500−900 °C range. Produced chars were fully characterized by N2 isotherms, ultimate CHNS analysis, X-ray Diffraction, Raman spectroscopy, Diffuse Reflectance Infrared spectroscopy, X-ray Photoelectron spectroscopy, helium Temperature Programmed Decomposition and Isoelectric Point analysis. Slow pyrolysis under reductant atmosphere favours deoxygenation reaction against dehydrogenation ones, reduces the carbon yield and results in chars with a more hydrophobic and graphitic character, higher thermal stability and weak surface functionalization. The use of intermediates temperatures (700 °C) favours the obtaining of chars with suitable physicochemical properties and good surface functionalization, which will facilitate the anchoring of the active phase on the surface, improving the metallic dispersion of the resulting one pot catalyst. This leads us to affirm that the use of reducing atmospheres at intermediate temperatures, is superior to the use of inert atmospheres for this purpose. This analysis on the impact of the use of a reductant atmosphere during slow pyrolysis of microcrystalline cellulose opens a new working path for the optimization of char-based catalysts obtained in a single stage.

Junio, 2020 | DOI: 10.1016/j.jaap.2020.104821

Microwave-assisted sol-gel synthesis of TiO2 in the presence of halogenhydric acids. Characterization and photocatalytic activity

Journal of Photochemistry and Photobiology A: Chemistry, 394 (2020) 112457
Fotocatálisis Heterogénea: Aplicaciones


The synthesis of mesoporous TiO2 nanosheets is reported using Ti(IV) Isopropoxide as Ti(IV) precursor. A sol-gel process combined with microwave activation is used. Three different halogenhydric acids (HX), were used to peptise the sol: HF(ac), HCl (ac) and HBr (ac). The three obtained TiO2-I(HX) samples were characterized by XRD, XRF, N2-adsorption, SEM, TEM, DRS and XPS. The three synthesized samples have high values of specific surfaces (between 100 m2/g and 200 m2/g) and similar band gap values (3.2–3.3 eV). The analysis of the surface composition by XPS confirms the presence of the halogenated species (F, Cl or Br) on the surface of each ones of the samples. The nanometric size (ca 5 nm) of the particles for each of the three samples was confirmed by XRD and by TEM. On the other hand, the nature of the halogenated acid used plays a role in the composition of the phases. While the TiO2-I (HF) sample was 100 % anatase, the other samples turned out to be biphasic, showing anatase/rutile in the TiO2-I(HCl) sample and anatase/brookite in the TiO2-I(HBr) sample. The samples were tested under two illumination conditions (UV and visible light) using rhodamine B and caffeine. The indirect role of the halide agent on the photocatalytic activities thereof is discussed.

Mayo, 2020 | DOI: 10.1016/j.jphotochem.2020.112457

Optical properties of molybdenum in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy

Pauly, N; Yubero, F; Tougaard, S
Applied Optics, 59 (2020) 4527-4532
Nanotecnología en Superficies y Plasma


Optical properties of polycrystalline molybdenum are determined from ultraviolet up to extreme ultraviolet by reflection electron energy loss spectroscopy (REELS). Calculations are performed within the dielectric response theory by means of the quantitative analysis of electron energy losses at surfaces QUEELS-epsilon (k, omega)-REELS software [Surf. Interface Anal. 36, 824 (2004)] that allows the simulation of inelastic scattering cross sections, using a parametric energy loss function describing the optical response of the material. From this energy loss function, the real and imaginary parts of the dielectric function, the refractive index, and the extinction coefficient are deduced and compared with previously published results.

Mayo, 2020 | DOI: 10.1364/AO.391014

Premelting of ice adsorbed on a rock surface

Esteso, V; Palacios, SC; MacDowell, LG; Fiedler, J; Parsons, DF; Spallek, F; Miguez, H; Persson, C; Buhmann, SY; Brevik, I; Bostrom, M
Physical Chemistry Chemical Physics, 22 (2020) 11362-11373
Materiales Ópticos Multifuncionales


Considering ice-premelting on a quartz rock surface (i.e. silica) we calculate the Lifshitz excess pressures in a four layer system with rock-ice-water-air. Our calculations give excess pressures across (1) ice layer, (2) water layer, and (3) ice-water interface for different ice and water layer thicknesses. We analyse equilibrium conditions where the different excess pressures take zero value, stabilized in part by repulsive Lifshitz interactions. In contrast to previous investigations which considered varying thickness of only one layer (ice or water), here we present theory allowing for simultaneous variation of both layer thicknesses. For a given total thickness of ice and water, this allows multiple alternative equilibrium solutions. Consequently the final state of a system will depend on initial conditions and may explain variation in experimental measurements of the thicknesses of water and ice layers.

Mayo, 2020 | DOI: 10.1039/c9cp06836h

Thermo-Photocatalytic Methanol Reforming for Hydrogen Production over a CuPd-TiO2 Catalyst

Lopez-Martin, A; Platero, F; Caballero, A; Colon, G
ChemPhotoChem (2020)
Materiales y Procesos Catalíticos de Interés Ambiental y Energético


A bimetallic CuPd/TiO2 system has been prepared by a two-step synthesis and was used for a methanol steam photoreforming reaction. By sequential deposition, palladium is deposited over copper nanoclusters through a galvanic replacement process. Hydrogen production by steam reforming from methanol was achieved by both thermo-photocatalytic and photocatalytic processes. It appears that H-2 production on the bimetallic system is notably higher than the Pd monometallic reference. Moreover this difference in the catalytic performance could be related to the higher CO evolution observed for the monometallic Pd-1.0 TiO2 system which is partially inhibited in the bimetallic catalyst. In addition, an important thermal effect can be envisaged in all cases. Nevertheless, this improved effect in the thermo-photocatalytic process is accompanied by a remarkable CO evolution and SMSI effect (important strong metal-support interactions) that hindered the efficiency as temperature increases. On this basis, optimal operational conditions for H-2 production are obtained for thermo-photocatalytic reforming at 100 degrees C, for which the synergetic effect is higher with lower CO production (H-2/CO=4)

Mayo, 2020 | DOI: 10.1002/cptc.202000010

Time-resolved operando DRIFTS-MS study of the moisture tolerance of small-pore SAPO-34 molecular sieves during CH4/CO2 separation

Romero, M; Navarro, JC; Bobadilla, LF; Dominguez, MI; Ivanova, S; Romero-Sarria, F; Centeno, MA; Odriozola, JA
Microporous and Mesoporous Materials, 298 (2020) 110071
Química de Superficies y Catálisis


This study pretends to evaluate and understand the effect of moisture presence during CO2/CH4 separation on small-pore SAPO-34 molecular sieves. Two SAPO-34 samples with different physicochemical properties (composition, crystal size and texture) were prepared by hydrothermal synthesis using either one or a mixture of two templates. Transient operando DRIFTS-MS measurements revealed that the sample's hydrophobic character is associated to the presence of Si islands, which enhanced sample's moisture tolerance during repetitive adsorption/desorption cycles. This knowledge is fundamental to achieve the rational design of efficient SAPO-34 membranes under realistic conditions.

Mayo, 2020 | DOI: 10.1016/j.micromeso.2020.110071

Structural and surface considerations on Mo/ZSM-5 systems for methane dehydroaromatization reaction

Lopez-Martin, A; Caballero, A; Colon, G
Molecular Catalysis, 486 (2020) 110787
Materiales y Procesos Catalíticos de Interés Ambiental y Energético


We have prepared a series of Mo/ZSM-5 systems by impregnation method with different metal loading. The optimum performance has been attained for 4% metal loading, yielding to ca. 2 mmol(benzene)/g(ca)(t) at the end of the reaction. The obtained catalysts were widely structural and surface characterized. As Mo content increases, the surface feature of the support is affected specially its mesoporosity. It has been stated the enormous complexity of Mo species present in the studied system. In situ characterization by XPS reveals different reduction and carburization behaviour depending on the Mo content.

Mayo, 2020 | DOI: 10.1016/j.mcat.2020.110787

Monitoring, Modeling, and Optimization of Lead Halide Perovskite Nanocrystal Growth within Porous Matrices

Tiede, DO; Rubino, A; Calvo, ME; Galisteo-Lopez, JF; Miguez, H
Journal of Physical Chemistry C, 124 (2020) 8041-8046
Materiales Ópticos Multifuncionales


The growth of lead halide perovskites within metal-oxide nanoporous films has been recently considered as a means to obtain chemically and photostable ligand-free high-quality nanocrystals (NCs). The growth process, governed by the reactions taking place in nanoreactors dictated by the matrix pore size, has not been explored so far. In this work, we use photoluminescence as a tool to monitor the growth of perovskite NCs within the void network of an optically transparent matrix. We consider the effect of different external factors, such as temperature, light illumination, or precursor concentration, on the growth dynamics, and discuss a possible formation mechanism of the confined perovskite NCs. Based on this analysis, guidelines that could serve to improve the fabrication and optoelectronic quality of this type of NCs are also proposed.

Abril, 2020 | DOI: 10.1021/acs.jpcc.0c01750

Advanced Strategies in Thin Films Engineering by Magnetron Sputtering

Palmero, A; Martin, N
Coatings, 10 (2020) 419
Nanotecnología en Superficies y Plasma


This Special Issue contains a series of reviews and papers representing some recent results and some exciting perspectives focused on advanced strategies in thin films growth, thin films engineering by magnetron sputtering and related techniques. Innovative fundamental and applied research studies are then reported, emphasizing correlations between structuration process parameters, new ideas and approaches for thin films engineering and resulting properties of as-deposited coatings.

Abril, 2020 | DOI: 10.3390/coatings10040419

Bio-Based Coatings for Food Metal Packaging Inspired in Biopolyester Plant Cutin

Benitez, JJ; Osbild, S; Guzman-Puyol, S; Heredia, A; Heredia-Guerrero, JA
Polymers, 12 (2020) 942
Materiales de Diseño para la Energía y Medioambiente


Metals used for food canning such as aluminum (Al), chromium-coated tin-free steel (TFS) and electrochemically tin-plated steel (ETP) were coated with a 2-3-mu m-thick layer of polyaleuritate, the polyester resulting from the self-esterification of naturally-occurring 9,10,16-trihydroxyhexadecanoic (aleuritic) acid. The kinetic of the esterification was studied by FTIR spectroscopy; additionally, the catalytic activity of the surface layer of chromium oxide on TFS and, in particular, of tin oxide on ETP, was established. The texture, gloss and wettability of coatings were characterized by AFM, UV-Vis total reflectance and static water contact angle (WCA) measurements. The resistance of the coatings to solvents was also determined and related to the fraction of unreacted polyhydroxyacid. The occurrence of an oxidative diol cleavage reaction upon preparation in air induced a structural modification of the polyaleuritate layer and conferred upon it thermal stability and resistance to solvents. The promoting effect of the tin oxide layer in such an oxidative cleavage process fosters the potential of this methodology for the design of effective long-chain polyhydroxyester coatings on ETP.

Abril, 2020 | DOI: 10.3390/polym12040942

Study of the influence of the precursors on the sensing properties of ZnO:Cu system

Ramos, A; Urbieta, A; Escalante, G; Hidalgo, P; Espinos, JP; Fernandez, P
Ceramics International, 46 (2020) 8358-8367
Nanotecnología en Superficies y Plasma


The properties of ZnO based materials for ethanol detection have been studied. Cu doped samples obtained from different precursors have been investigated. ZnO and ZnS have been used as host and Cu and CuO as dopant sources.

The sensing measurements have been mostly performed at room temperature. To monitor the effect of the presence of gas, resistivity and photoluminescence experiments with and without sensing gas have been carried out. The sensing behaviour is affected by the nature of the precursors used. For ZnO:Cu and ZnO:CuO series, a higher sensitivity is obtained at the lower gas concentrations, the better response is obtained for the sample ZnO:Cu with wt.1% of metallic copper. Strong segregation effects observed in these samples could be deleterious for the sensing properties. In the series ZnS:CuO, no segregation is observed, however the sensing behaviour is erratic and attributed to the reduction of Cu ions to the metallic state.

Abril, 2020 | DOI: 10.1016/j.ceramint.2019.12.068