Menú secundario

Proyectos : Filtros

Descongelación inteligente y sostenible mediante ingeniería de ondas acústicas aplicadas a superficies | SOUNDOFICE




Investigador Principal: Coordinador ICMS: Ana Isabel Borrás Martos
Periodo: 01-11-2020 / 31-10-2024
Organismo Financiador: European Commission Horizon 2020
Código: H2020-FET-OPEN/0717
Componentes: Agustín R. González-Elipe, Juan Pedro Espinós, Francisco Yubero, Ángel Barranco, Víctor Rico
Nanotecnología en Superficies y Plasma

Resumen [+]

Icing on surfaces is commonplace in nature and industry and too often causes catastrophic events. SOUNDofICE ultimate goal is to overcome costly and environmentally harmful de-icing methods with a pioneering strategy based on the surface engineering of MHz Acoustic Waves for a smart and sustainable removal of ice. This technology encompasses the autonomous detection and low-energy-consuming removal of accreted ice on any material and geometry. For the first time, both detection and de-icing will share the same operating principle. The visionary research program covers the modeling of surface wave atom excitation of ice aggregates, integration of acoustic transducers on large areas, and the development of surface engineering solutions to stack micron-size

interdigitated electrodes together with different layers providing efficient wave propagation, anti-icing capacity, and aging resistance. We will demonstrate that this de-icing strategy surpasses existing methods in performance, multifunctionality, and capacity of integration on industrially relevant substrates as validated with proof of concept devices suited for the aeronautic and wind power industries. SOUNDofICE high-risks will be confronted by a strongly interdisciplinary team from five academic centers covering both the fundamental and applied aspects. Two SMEs with first-hand experience in icing will be in charge of testing this technology and its future transfer to key EU players in aeronautics, renewable energy, and household appliances. An Advisory Board incorporating relevant companies will contribute to effective dissemination and benchmarking. The flexibility of the R&D plan, multidisciplinarity, and assistance of the AdB guarantee the success of this proposal, bringing up a unique opportunity for young academia

leaders and SMEs from five different countries to strengthen the EU position on a high fundamental and technological

impact field, just on the moment when the climate issues are of maxima importance.

*Participantes
- INMA: Instituto de Nanociencia y Materiales de Aragón, Spain
-UNIZAR: Universidad de Zaragoza, Spain
-TECPAR: Fundacja Partnerstwa Technologicznego Technology Partners;  Poland
- IFW: Leibniz-Institut Fuer Festkoerper- Und Werkstoffforschung Dresden E.V.;  Germany
-TAU: Tampereen Korkeakoulusaatio SR;  Finland
- INTA: Instituto Nacional De Tecnica Aeroespacial Esteban Terradas; Spain
- Villinger: VILLINGER GMBH,  Austria
- EnerOcean: EnerOcean S.L.,  Spain


Estructuras adaptativas multiresponsivas para fotónica integrada, piezo/tribotronica y monitorización optofluídica




Investigador Principal: Angel Barranco Quero y Ana Isabel Borrás Martos
Periodo: 01-06-2020 / 31-05-2023
Organismo Financiador: Ministerio de Ciencia, Innovación y Universidades
Código: PID2019-110430GB-C21
Componentes: José Cotrino Bautista, Victor J. Rico Gavira, Francisco Yubero Valencia, Juan Pedro Espinós Manzorro, Agustín R. González-Elipe
Nanotecnología en Superficies y Plasma

Resumen [+]

---


Recubrimientos innovadores preparados por Magnetron Sputtering para absorción solar selectiva




Investigador Principal: Juan Carlos Sánchez López y Ramón Escobar Galindo (Abengoa Solar New Tecnologies, S.A.)
Periodo: 01-06-2020 / 31-05-2024
Organismo Financiador: Ministerio de Ciencia, Innovación y Universidades
Código: PID2019-104256RB-I00
Componentes: Cristina Rojas Ruiz, Belinda Sigüenza Carballo
Tribología y Protección de Superficies

Resumen [+]

El cambio climático ocasionado por las emisiones de gases con efecto invernadero y el agotamiento de los combustibles fósiles a corto-medio plazo hacen necesaria la búsqueda de nuevas fuentes de energía alternativas, limpias y renovables. De entre ellas, la energía solar es una de las mejores opciones por su gran disponibilidad para la generación de calor y electricidad.

El objetivo de este proyecto va encaminado al desarrollo de nuevos recubrimientos absorbedores solares selectivos crecidos en forma de multicapas basados en nitruros metálicos de cromo y aluminio (CrAlN). Las propiedades de resistencia a la oxidación y estabilidad térmica del CrAlN unidas a un diseño nanoestructurado adecuado permitirán mantener unas buenas prestaciones ópticas (alta absorbancia y baja emitancia) y mejorar su durabilidad a alta temperatura. El incremento de la temperatura de trabajo (T>550ºC) conllevará una mejora de la eficiencia y una reducción de costes de las plantas de concentración de solar térmica, haciéndolas más competitivas. Para su preparación se utilizará la técnica de pulverización catódica mediante impulsos de alta intensidad (HiPIMS), una variante reciente de la pulverización catódica convencional que permite mejorar la densidad y compacidad de las capas gracias a un mayor grado de ionización del plasma. Estas propiedades son de interés para mejorar la adhesión al sustrato y ralentizar los procesos de degradación térmica. Además de los nitruros se ensayarían otras configuraciones cambiando el tipo de material absorbedor (oxinitruros y nanocomposites de carburos metálicos).

El proyecto comprenderá todas las etapas, desde la síntesis de los materiales componentes de las estructuras solares selectivas, diseño y simulación de su comportamiento óptico, a su validación en condiciones similares a la aplicación final (a nivel de laboratorio y ensayos de campo). La caracterización estructural, química y de estabilidad térmica y resistencia a la oxidación discurrirá en paralelo con el fin de optimizar los recubrimientos solares selectivos con mejores prestaciones y durabilidad.


Diseño de nanomateriales tridimensionales para la solución todo en uno a la recolección de energía ambiental de fuentes múltiples | 3DSCAVENGERS




Investigador Principal: Ana Isabel Borrás Martos
Periodo: 01-03-2020 / 28-02-2025
Organismo Financiador: European Commission STARTING GRANT
Código: H2020-ERC-STG/0655
Componentes:
Nanotecnología en Superficies y Plasma

Resumen [+]

https://3dscavengers.icms.us-csic.es/

Thermal and solar energy as well as body movement are all sources of energy. They can be exploited by advanced technology, obviating the need for battery recharging. These local ambient sources of energy can be captured and stored. However, their low intensity and intermittent nature reduces the recovery of energy by microscale instruments, highlighting the need for an integrated multisource energy harvester. Existing methods combine different single source scavengers in one instrument or use multifunctional materials to concurrently convert various energy sources into electricity.

The EU-funded 3DScavengers project proposes a compact solution based on the nanoscale architecture of multifunctional three-dimensional materials to fill the gap between the two existing methods. These nanoarchitectures will be able to simultaneous and individual harvesting from light, movement and temperature fluctuations. 3DScavengers ultimate goal is to apply a scalable and environmental friendly one-reactor plasma and vacuum approach for the synthesis of this advanced generation of nanomaterials.

 

 

@dscavengers


Modelado e implementación de la técnica Freeze-Casting: gradientes de porosidad con un equilibrio tribo-mecánico y comportamiento celular electro-estimulado




Investigador Principal: Yadir Torres Hernández (US) y Juan Carlos Sánchez López
Periodo: 01-02-2020 / 31-01-2022
Organismo Financiador: Junta de Andalucía. Universidad de Sevilla
Código: US-1259771
Componentes: Ana María Beltrán Custodio, Alberto Olmo Fernández, Paloma Trueba Muñoz, María de los Ángeles Vázquez Gámez
Tribología y Protección de Superficies

Resumen [+]

El titanio comercialmente puro (Ti c.p.) y la aleación Ti6Al4V, son los biomateriales metálicos con el mejor pronóstico para la reparación clínica del tejido óseo. Sin embargo, a pesar de sus ventajas, 5-10% de los implantes fallan durante los cinco años post-implantación. Éstos se asocian fundamentalmente al apantallamiento de tensiones (diferencias de rigidez entre el implante-hueso), el empleo de criterios de diseño (fractura y fatiga) no adecuados para biomateriales, a los fenómenos de tribo-corrosión en condiciones de servicio y a los problemas que ocurren en la intercara (micromovimientos y/o presencia de bacterias) que limitan la capacidad de oseintegración. En este proyecto se propone fabricar e implementar un dispositivo sencillo y económico para obtener cilindros con porosidad controlada (gradiente) y alargada mediante la técnica de congelación dirigida. Se desarrollaran modelos de elementos finitos para estimar el crecimiento geométrico de las dendritas de hielo y el comportamiento mecánico de los cilindros porosos (distribución de esfuerzos y deformaciones), usando radiografías en tiempo real del proceso de congelación dirigida, así como los parámetros que caracterizan la microestructura (proporción, tamaño, morfología de la porosidad) y el comportamiento a compresión (rigidez y límite de fluencia). Además, se plantea la generación de patrones de rugosidad superficial mediante el bombardeo de iones, encaminados a mejorar la unión intima entre el implante y el tejido óseo. Por otra parte, se plantean protocolos in-vitro adecuados para evaluar la citotoxicidad, la adhesión, diferenciación y proliferación celular. Finalmente, se desarrollará un sistema de medida de bio-impedancia que permita racionalizar la influencia de la porosidad, el acabado superficial y los estímulos eléctricos en el comportamiento in-situ de osteoblastos. En este contexto, el objetivo principal es fabricar cilindros con una porosidad controlada y su superficie modificada, que permita garantizar un mejor equilibrio biomecánico, tribo-corrosivo y biofuncional (in-growth y oseointegración del tejido óseo y el implante).


Cerámicas en un Flash: La La nueva ruta para un procesado energética y medioambientalmente eficiente




Investigador Principal: Pedro Enrique Sánchez Jiménez
Periodo: 01-01-2020 / 31-12-2021
Organismo Financiador: Junta de Andalucia
Código: P18-FR-1087
Componentes: M. Jesús Diánez Millán, Luis A. Pérez Maqueda
Reactividad de Sólidos

Resumen [+]

El proyecto CeramFLASH propone la utilización de las novedosas técnicas de Sinterizado Flash (FS) y Sinterizado Flash Reactivo (SFR) para la síntesis y preparación de cerámicas con interés tecnológico tales como electrolitos sólidos, piezoeléctricos o cerámicas duras electromecanizables. Estas técnicas permiten preparar materiales cerámicos en segundos a temperaturas significativamente más bajas que las requeridas por las técnicas de sinterizado convencional simplemente haciendo circular por la pieza una muy pequeña intensidad de corriente eléctrica (de unos pocos miliamperios). Esta ventaja permite reducir de forma significativa el elevado consumo energético necesario en el procesado de materiales cerámicos.
Adicionalmente, se posibilita la preparación en forma densa y nanoestructurada de cerámicas muy difíciles de preparar mediante métodos convencionales, tales como compuestos de baja estabilidad térmica o compuestos que requieren temperaturas de sinterizado muy elevadas.
Finalmente, CeramFLASH pretende utilizar campos alternos con frecuencia de oscilación variable y métodos de control inteligente basados en la respuesta de la muestra al campo para conseguir un mejor control de las características microestructurales en las cerámicas resultantes. A pesar de que la técnica de FS se propuso por vez primera hace solo 8 años, y la SFR fue introducida en 2018 por nuestro grupo, el interés por este proceso está creciendo de forma importante por su gran potencial científico y tecnológico. CeramFLASH cuenta con la implicación de personal con experiencia en la técnica y la colaboración activa del investigador pionero en su propuesta, por lo que su financiación permitirá establecer una línea de investigación a largo plazo que permita consolidar en Andalucía un grupo de referencia a nivel internacional en este ámbito.


Nuevos recubrimientos nanoestructurados para absorción eficiente de la radiación solar en dispositivos de concentración




Investigador Principal: Juan Carlos Sánchez López
Periodo: 01-01-2020 / 31-12-2022
Organismo Financiador: Junta de Andalucia
Código: P18-RT-2641
Componentes: T. Cristina Rojas Ruiz, Belinda Siguenza Carballo
Tribología y Protección de Superficies

Resumen [+]

La mejora de los materiales empleados en los dispositivos usados en el campo de las energías renovables permitirá incrementar la eficiencia de los mismos haciéndolos más competitivos y rentables. El presente proyecto pretende desarrollar nuevos recubrimientos absorbedores selectivos de la energía solar aptos para trabajar a temperaturas superiores a las posibles con los materiales actualmente en uso en dispositivos de concentración solar térmica (500ºC en vacío – media concentración; 800ºC al aire – alta concentración). Los sistemas serán preparados en forma de multicapas por la novedosa tecnología de pulverización catódica donde los materiales son evaporados mediante impulsos de alta energía (HiPIMS - High Power Impulse Magnetron Sputtering). Los materiales preparados deberán cumplir los requisitos ópticos y de estabilidad química para soportar las condiciones de alta irradiación solar y temperaturas de trabajo. Este ambicioso proyecto se llevará a cabo mediante la colaboración de dos grupos de investigación pertenecientes al Instituto de Ciencia de Materiales de Sevilla CSIC-ICMS (grupo TEP958) y a la plataforma solar de Almería CIEMAT-PSA (Grupo TEP247). El grupo CSIC-ICMS se encargará del diseño, preparación y caracterización de los recubrimientos. Por su parte CIEMAT-PSA, diseñará y desarrollará los ensayos de campo, validando los recubrimientos en condiciones de trabajo similares a las de la aplicación final en términos de flujo solar concentrado incidente y temperaturas de operación. Dichos ensayos incluirán tanto determinación de parámetros térmicos y ópticos en condiciones nominales de operación, así como ciclado térmico de alta frecuencia (tratamiento térmico y envejecimiento).


Recubrimientos termocrómicos inteligentes para la climatización eficiente y el control ambiental (TOLERANCE)




Investigador Principal: Angel Barranco Quero y Alberto Palmero Acebedo
Periodo: 01-01-2020 / 31-12-2022
Organismo Financiador: Junta de Andalucia
Código: P18-RT-3480
Componentes: Ana María Gómez Ramírez, Juan Ramón Sánchez Valencia, Victor J. Rico Gavira, Rafael Alvarez Molina, Francisco Yubero Valencia, Juan Pedro Espinós Manzorro, Ana Isabel Borrás Martos, Agustín R. González-Elipe
Nanotecnología en Superficies y Plasma

Resumen [+]

La Agencia Internacional de la Energía considera que el uso sistemático de procedimientos autónomos de control ambiental representa una de las mejores apuestas tecnológicas para reducir el consumo energético asociado a la climatización de edificios (más del 40% del consumo global en países desarrollados, muy superior al porcentaje debido al transporte), reduciendo el impacto ambiental y mejorando además el confort habitacional. TOLERANCE persigue introducir y desarrollar en Andalucía la tecnología de los recubrimientos termocrómicos como elemento inteligente y autónomo de control de la irradiación solar en edificios. El interés de la propuesta se centra en nichos de aplicación como el cerramiento de edificios, el mobiliario urbano, la mejora de sistemas de producción de agua caliente sanitaria o la mejora de invernaderos. Un recubrimiento termocrómico se caracteriza por transmitir todo el espectro solar a bajas temperaturas y reflejar selectivamente parte de éste (el infrarrojo) a altas temperaturas. En esta línea, el proyecto propone diversas acciones de I+D para el desarrollo de capas delgadas con composición VO2, óxido termocrómico caracterizado con una temperatura de transición cercana a la temperatura ambiente, sobre vidrio y plásticos mediante técnicas escalables industrialmente, así como su nanoestructuración, dopado e integración en sistemas multicapas a fin de mejorar sus características y prestaciones multifuncionales.


Desarrollo de catalizadores y soportes para procesos de almacenamiento químico de energía neutros en CO2 basados en líquidos orgánicos portadores de hidrógeno




Investigador Principal: María Asunción Fernández Camacho
Periodo: 1-1-2019 / 31-12-2021
Organismo Financiador: Ministerio de Ciencia, Innovación y Universidades
Código: RTI2018-093871-B-I00
Componentes: María del Carmen Jiménez de Haro
Materiales Nanoestructurados y Microestructura

Resumen [+]

El agotamiento de los combustibles fósiles (a corto y largo plazo) y el calentamiento global derivado del efecto invernadero son consecuencias del uso extensivo de estos combustibles. Por lo tanto, es muy conveniente utilizar y desarrollar energías renovables y así eliminar nuestra dependencia de los combustibles fósiles. Esto hace que el almacenamiento de energía producida por fuentes renovables (que son intermitentes) sea un objetivo importante de investigación. En proyectos anteriores, hemos trabajado en el estudio de nanomateriales y catalizadores para el almacenamiento de hidrógeno como vector de transporte y almacenamiento de energía (ciclo del H2). En este nuevo proyecto, el grupo de investigación propone avanzar en la Implementación de líquidos orgánicos como portadores de hidrógeno (LOHC) como una forma prometedora de combinar los ciclos del C02 y del H2 que conduzca a un almacenamiento de energía sostenible en un ciclo neutro en carbono. Pequeñas moléculas orgánicas, como el ácido fórmico o el metanol, se pueden usar para almacenar el H2 (y la energía) proveniente de fuentes renovables. Estos combustibles alternativos se pueden quemar o usarse para generar H2 que alimente directamente a una pila de combustible.
En este proyecto se llevarán a cabo investigaciones para la implementación de dos procesos relacionados con las tecnologías LOHC:
i) La descomposición térmica selectiva del ácido fórmico por catálisis heterogénea para la prodUCCión bajo demanda de hidrógeno exento de monóxido de carbono.
ii) La producción de hidrógeno por reformado de alcoholes (Le. biometanol) en procesos fotocatalíticos heterogéneos. La catálisis desempeña un papel clave en la implementación de estos dos procesos. Por lo tanto, los principales objetivos y actividades del proyecto son el diseño racional y la preparación de catalizadores y soportes para estudiar las relaciones composición-estructuradesempeño en los dos procesos mencionados anteriormente. El enfoque innovador es la aplicación de técnicas asistidas por plasma, como la pulverización catódica para el crecimiento de películas delgadas, y los tratamientos con plasmas de oxidación, reducción y grabado, para el desarrollo de recubrimientos catalíticos nanoestructurados y nanopartículas soportadas. Se desarrollarán espumas de carbono poroso y catalizadores basados en Pd que incluyen Pd, Pd-C, Pd-B o Pd-Cu para el estudio de la reacción de descomposición de ácido fórmico. Se investigarán películas fotocatalíticas de Ti02-TiOx con Pt (y/o Au) como co-catalizadores para el foto-reformado de metanol.


Nanopartículas multifuncionales para la obtención de bioimágenes mediante luminiscencia, resonancia magnética y tomografía computerizada de Rayos X




Investigador Principal: Manuel Ocaña Jurado y Ana Isabel Becerro Nieto
Periodo: 1-1-2019 / 31-12-2021
Organismo Financiador: Ministerio de Ciencia, Innovación y Universidades
Código: RTI2018-094426-B-I00
Componentes: Nuria O. Nuñez Alvarez
Materiales Coloidales

Resumen [+]

El proyecto persigue la preparación de nanoparticulas (NPs) multifuncionales con propiedades mejoradas y caracteristicas (tamaño, estabilidad coloidal y toxicidad) adecuadas que puedan emplearse en  más de una modalidad de obtención de imágenes de órganos, tejidos y células, cuyo principal interés radica en que mediante un único tipo de sonda se podría obtener información complementaria
esencial para un diagnóstico clinico más riguroso. En concreto, se estudiarán sondas bifuncionales para la obtención de imágenes mediante luminiscencia y resonancia magnética (MRI) o tomografía computarizada de rayos X (CT), y sondas trifuncionales con utilidad para las tres modalidades mencionadas. Se abordarán dos tipos de biosondas luminiscentes. Por una parte, se diseñarán NPs
luminiscentes constituidas por matrices singulares dopadas con cationes lantánidos (Nd3+ o Er3+fYb3+ o Tm3+fYb3+), cuya excitación y emisión tiene lugar en la región del infrarrojo cercano (NIR) conocida como ventana biológica (650-1800 nm), en la que las radiaciones no son dañinas para los tejidos y tienen alto poder de penetración. Por otra parte, se persigue la obtención de NPs cuya luminiscencia persiste después de eliminar la excitación, evitándose así los posibles efectos no deseados de ésta (autofluorescencia de los tejidos, radiaciones dañinas). En el primer caso, se pretende conseguir una mayor estabilidad química y térmica de las sondas mediante la selección de matrices tipo oxifluoruro más estables que las de tipo fluoruro propuestas hasta ahora, En el segundo caso, se abordarán sistemas con luminiscencia persistente en el NIR con composición ZnGa204:Cr3+ y Y3AI2Ga3012:Ce3+,Cr3+,Nd3+, para los que es prioritario desarrollar nuevos métodos de sintesis que permitan la obtención de NPs uniformes, necesarias para este tipo de aplicaciones. Respecto a la modalidad MRI y en respuesta a la necesidad de desarrollar agentes de contraste para las más modernas técnicas que operan a campos magnéticos altos para aumentar la resolución de las imágenes y asi obtener un diagnóslico más preciso, se planea desarrollar NPs constituidas por compuestos (oxifluoruros, vanadatos, fosfatos) de Dy y Ho. Por último, debido al alto número atómico de los elementos constituyentes de las sondas anteriores, es de esperar que éstas también tengan una alta capacidad de atenuación de rayos X, siendo por tanto también potencialmente útiles como agentes de contraste para CT. En este caso, el empleo de las NPs objeto de estudio aportará importantes ventajas respecto a los agentes comerciales utilizados en la actualidad que se traducen en un mayor control del tiempo de residencia en el organismo y de su biodistribución y por tanto, en la posibilidad de disminuir las dosis utilizadas reportando asi un beneficio para el paciente. El proyecto contempla tanto la fabricación de las sondas optimizadas como la exploración de su aplicabilidad al campo del diagnóstico clínico mediante la obtención de imágenes in vivo en ratones. El equipo investigador posee gran experiencia en la sintesis de NPs inorgánicas basadas en tierras raras y dispone de la mayoria de los medios necesarios para su caracterización. Además, dicho equipo cuenta con el apoyo de investigadores de otras instituciones, expertos en diversos aspectos del proyecto, que colaborarán en el desarrollo de algunas tareas del mismo como vienen haciendo desde hace varios años, lo que garantiza el correcto desarrollo de la propuesta.


Procesos Power-to-X para la Valorización de Co2 en Reactores Catalíticos Estructurados (Co2-Ptx)




Investigador Principal: José Antonio Odriozola Gordón y Francisca Romero Sarria
Periodo: 1-1-2019 / 31-12-2021
Organismo Financiador: Ministerio de Ciencia, Innovación y Universidades
Código: RTI2018-096294-B-C33
Componentes: Luis F. Bobadilla Baladron, Maria Isabel Dominguez Leal, Anna Dimitrova Penkova, Lola de las Aguas Azancot Luque, Marta Romero Espinosa, Juan Carlos Navarro de Miguel
Química de Superficies y Catálisis

Resumen [+]

La tecnología Power-to-X (PTX) tiene como objetivo el almacenamiento de energía (preferentemente renovable) en productos químicos. Dichos productos pueden usarse luego como combustibles o como moléculas plataforma para otras síntesis químicas. Por tanto, esta tecnología juega un papel fundamental incrementando la fracción renovable del mix energético en línea con los objetivos de la UE para la reducción de emisiones de gases con efecto invernadero.

La producción de H2 por electrólisis de agua para PTX es una tecnología madura disponible comercialmente que puede ser usada durante los periodos valle de consumo de energía renovables.

Por otro lado, el CO2 es una fuente de carbono desaprovechada por lo que el uso combinado de H2 renovable y CO2 añade un importante plus al proceso PTX ya que el CO2 asociado a las emisiones de gases de efecto invernadero es reintegrado contribuyendo a la economía circular y la descarbonización. Esta es la idea central que guía la presente propuesta. En particular, se trata de llevar a cabo las siguientes reacciones: hidrogenación de CO2 a metano (también llamada metanación de CO2 o reacción de Sabatier), la reacción reversa Water-Gas-Shift (activación del CO2 y ajuste de la relación H2/CO), síntesis de biocombustibles (dimetil éter y SFT) y producción de ácido acético. Estas reacciones ofrecen notables retos químico-ingenieriles en aspectos como: i) desarrollo de catalizadores multifuncionales adecuados; ii) gestión térmica de reacciones fuertemente exotérmicas; iii) control de la selectividad en reacciones múltiples en serie por acción conjunta de la temperatura, el tiempo de residencia, la formulación del catalizador y el diseño del reactor. El conocimiento adquirido por el consorcio en los proyectos previos (MAT2006-12386, ENE2009-14522, ENE2012-37431 y ENE2015-66975) nos permite proponer de una manera sólida y fundamentada el uso de catalizadores y reactores estructurados para superar estos retos.

Por tanto, el objetivo fundamental de esta propuesta es el estudio de sistemas catalíticos estructurados para reacciones relevantes del proceso Power-To-X con CO2 (CO2-PTX). Por otro lado, esperamos que la intensificación que aportan los sistemas estructurados sobre metales y los patrones de flujo desarrollados en sistemas como espumas de poro abierto jueguen papeles determinantes en el control de la temperatura y la selectividad de la reacción. En este sentido se estudiarán diferentes arquitecturas de sustrato junto a las variables principales como la densidad de celda o poro, el espesor de película catalítica o la aleación metálica del sustrato. Finalmente, para aproximarnos a la aplicación industrial de estos sistemas CO2-PtX se considerará la valorización de CO2 presente en corrientes diluidas como los gases de combustión. Esto supone nuevos retos debido a la baja concentración de CO2, altos caudales volumétricos y efectos negativos de otros componentes (H2O, SOx, etc.) en la actividad y estabilidad de los catalizadores. Se investigarán nuevas formulaciones de catalizadores junto con estrategias avanzadas de adsorción-desorción-reacción de CO2 sobre los sustratos estructurados estudiados.

Globalmente, el proyecto se estructurará en forma matricial con tareas transversales de cada grupo basadas en sus líneas de especialización (modelado, estructuración y caracterización avanzada) junto a reacciones concretas de cada laboratorio que conformarán las tareas longitudinales del proyecto


Verificación de la existencia de fuerzas de Casimir repulsivas en la macroescala en láminas delgadas suspendidas y autosoportadas




Investigador Principal: Hernán Ruy Míguez García
Periodo: 1-11-2018 / 31-10-2020
Organismo Financiador: Ministerio de Economía y Competitividad
Código: FIS2017-91018-EXP
Componentes:
Materiales Ópticos Multifuncionales

Resumen [+]

El proyecto VERSUS tiene como objetivo principal realizar la primera observación de fuerzas de Casimir-Lifshitz repulsivas en sistemas macroscópicos plano-paralelos. Para esto se centraá en el diseño, fabricación y caracterización de materiales ópticos que permitan controlar la intensidad y naturaleza de la fuerza de Casimir-Lifshitz, de forma que puedan observarse y caracterizarse fenómenos de levitación debido al balance de ésta y la fuerza gravitatoria. Esta propuesta, readicalmente novedosa, hace uso de técnicas de espectroscoìa óptica (basadas en interferencia óptica entre los haces parcialmente reflejados y transmitido en las intercaras del sistema plano-paralelo) para caracterizar la distancia de equilibrio a la que el sistema levita sobre un sustrato. Para ello, se parte de diseños de materiales cuyas propiedades ópticas y densidades son tales que sumergidas en distintos fluidos leviten sobre ciertos sustratos como resultado del balance de esas fuerzas, como recientemente ha sido demostrado de forma teórica por el equipo solicitante. Nuestro grupo ha demostrado teóricamente que existen combinaciones de materiales que fabricados en forma de láminas delgadas (< 1 micra) pueden levitar a distancias del orden de las pocas decenas o centenas de nanómetros sobre un sustrato adecuado. En particular, láminas de tefón, poliestireno y sílice inmersas en glicerol levitan sobre una oblea de silicio, siendo las distancias de equilibrio controlables y sintonizables a través del grosor de las láminas delgadas y la temperatura del sistema. Las láminas delgadas autosoportadas deben ser compactas, mecánicamente estables, de superficies planas, grosor controlado y químicamente afines al fluido en el que están sumergidas. La observación macroscópicas de fuerzas repulsivas de Casimir-Lifshitz, nunca reportada anteriormente, mediante medidas de espectroscopía óptica constituiria un logro sin precedentes en el campo del estudio de las interacciones fundamentales de la materia.


Aprovechamiento de biomasa y producción sostenible de energía mediante (foto)catalizadores y reactores estructurados basados en materiales carbonosos




Investigador Principal: Miguel Angel Centeno Gallego y Svetlana Ivanova
Periodo: 01-01-2018 / 31-12-2020
Organismo Financiador: Ministerio de Economía y Competitividad
Código: ENE2017-82451-C3-3-R
Componentes: Carlos López Cartes, Leidy Marcela Martínez Tejada, María Isabel Domínguez Leal, Regla Ayala Espinar
Química de Superficies y Catálisis

Resumen [+]

El objetivo principal del presente proyecto coordinado entre la U. de Zaragoza, el ICMS y la U. de Cádiz, es el desarrollo de catalizadores multifuncionales y estructurados basados en materiales catalíticos carbonosos, tanto de carácter biomórfico, como grafénico-grafítico. Estos materiales catalíticos han de ser activos, selectivos y estables en reacciones directamente relacionadas con el aprovechamiento de la biomasa lignocelulósica (producción de 5-HMF, ácido levulínico, FDCA, o γ-valerolactona) y la producción sostenible de energía (producción de H2), así como la valorización química y fotoquímica de CO2 (hidrogenación de CO2, descomposición de biogás, foto-reformado de bio-alcoholes), usando H2 de origen renovable ("water splitting"). Este proyecto trata de mejorar procesos actualmente implementados que están relacionados con la producción de energía, y otros más novedosos, como el aprovechamiento de la luz solar, que sin lugar a dudas están llamados a tener un papel importante en este campo. De hecho, la utilización de la energía solar haría más viable energéticamente, por ejemplo, la reacción de metanación de CO2 al usar H2 de origen (foto)renovable producido por “water splitting”. Se busca también la generación de productos de alto valor añadido por procesos de biorefinería, que sustituyan los obtenidos actualmente a partir de fuentes fósiles. Se pretende conseguir un conjunto de sólidos carbonosos con propiedades estructurales (porosidad jerárquica meso/micro), hidrofilicidad-hidrofobicidad, funcionalidades químicas, composición superficial etc. diseñados ad hoc para cada una de las reacciones consideradas por los distintos subproyectos, incluyendo la implementación de procesos en continuo mediante la utilización de reactores estructurados a partir de los catalizadores más eficientes. El desarrollo y utilización de sistemas catalíticos estructurados aumenta la viabilidad e intensificación de los procesos y por tanto la eficiencia energética y medioambiental. La complementariedad de los tres grupos proponentes abre la posibilidad de abordar en un solo proyecto todos estos objetivos, permitiendo aplicar distintas metodologías emergentes para la síntesis de nuevos materiales carbonosos, como son la mineralización biomórfica, la expansión/funcionalización de compuestos intercalados de grafito, grafitos especiales (e.g. “graphite nanolayers” o "nanoflakes”), uso de plantillas inorgánicas para generación de carbones mesoporosos, su funcionalización avanzada y su aplicación en procesos de alto impacto en el área de la energía, tecnología química y tecnologías ambientales.


Desarrollo de nuevos materiales nanoestructurados para la valorización de metano a hidrógeno y olefinas C2-C4




Investigador Principal: Alfonso Caballero Martínez y Gerardo Colón Ibáñez
Periodo: 1-1-2018 / 31-12-2020
Organismo Financiador: Ministerio de Ciencia, Innovación y Universidades
Código: ENE2017-88818-C2-1-R
Componentes: Rosa Pereñiguez Rodríguez, Francisco Jesús Platero Moreno, Angeles Maria López Martín, Juan Pedro Holgado Vázquez
Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Resumen [+]

El desarrollo de nuevos materiales con propiedades singulares en distintos campos de aplicación se ha convertido en las últimas décadas en una prioridad en multitud de áreas de la ciencia y la tecnología. Entre ellas, además de materiales micro y mesoporosos de composición variable, pueden destacarse los sólidos basados en estructura perovskita ABO3. La versatilidad que presentan estos últimos mediante la sustitución parcial en las posiciones A y B por distintos metales alcalinos, alcalino-terreos y de transición los convierte en una alternativa interesante, y de hecho tienen aplicaciones en campos relacionados con sus propiedades electricas, ópticas, térmicas, catalíticas y como adsorbentes. En el presente proyecto coordinado se plantea la preparación de un conjunto de materiales, entre ellos algunos con estructura perovskita (Fe, Co, Mn, Cu y Bi en posiciones B; Ca, Mg, Ce y La en posiciones A), y estudiar su aplicación en distintos procesos de catálisis heterogénea y de adsorción de contaminantes. Para ello se emplearán una serie de técnicas de preparación recientemente descritas (Cristalización por Microondas, Proceso de Autocombustión, Mesoestructuración por Nanocasting y Porosidad Jerarquizada) que permiten obtener sistemas de alta superficie específica y nanoestructura controlada. De esta forma, y combinando los metales en posiciones A y B para que actuen tanto como agentes promotores como precursores de aleaciones metálicas en los sistemas reducidos, se obtendrán sistemas con propiedades muy variadas y versatiles. Asi, en el subproyecto 1 se estudiarán sus propiedades catalíticas en procesos de enorme interés para la valorización de metano, principal componente del gas natural y una de las fuentes de energía más abundantes en la actualidad. En concreto, y junto con sistemas soportados en materiales mesoporosos y otros, se estudiará en primer lugar la actividad de perovskitas de niquel para la reacción de reformado seco de metano con el fin de obtener gas de síntesis. El objetivo será obtener sistemas activos y sobre estables frente a los fenómenos de desactivación habituales por deposición de coque. En segundo lugar, se estudiarán sistemas basados principalmente en Fe y Co para la reacción de Fisher-Tropsch a olefinas C2-C4, productos de gran interés económico por ser precursores de una gran cantidad de otros productos de alto valor añadido. Por otro lado, los trabajos propuestos en el subproyecto 2 están relacionados con la aplicación de estos sólidos de estructura perovskita para el desarrollo de procesos de eliminación de contaminantes emergentes, un nuevo tipo de desechos que suelen ser resistentes a los procesos de degradación biológico convencionales, constituyendo por tanto un problema medioambiental de primer orden. En concreto, el proyecto pretende desarrollar tratamientos integrados de depuración (adsorción-POA), utilizando perovskitas para la eliminación de contaminantes emergentes (Ibuprofeno, Salicílico, Ciprofloxacina, Cafeína, Gemfibrozil y  Benzafibrato), optimizando parámetros como el rendimiento, la reciclabilidad de los catalizadores, la aplicabilidad y la sostenibilidad. De especial relevancia en este tipo de procesos es la utilización de procesos de fotocatálisis heterogénea, por lo que el desarrollo de nuevos óxidos semiconductores como las perovskitas, con características fisicoquímicas y estructurales superiores a las del TiO2, es un objetivo de primer orden del presente subproyecto.


Integración del proceso Ca-looping en centrales de energía solar concentrada para el almacenamiento termo-químico de energía




Investigador Principal: Luis A. Pérez Maqueda
Periodo: 01-01-2018 / 31-12-2021
Organismo Financiador: Ministerio de Economía y Competitividad
Código: CTQ2017-83602-C2-1-R
Componentes: Pedro Enrique Sánchez Jiménez, María Jesús Diánez Millán
Reactividad de Sólidos

Resumen [+]

El proyecto solicitado se enmarca dentro del reto general de encontrar nuevas tecnologías de almacenamiento de energía baratas y no contaminantes que permitan superar una de las limitaciones mayores de las fuentes renovables que es la intermitencia en la generación de electricidad. En particular, en este proyecto se propone realizar una integración de la tecnología de Ca-looping en una planta termosolar de concentración. La tecnología de Ca-looping, originariamente propuesta para procesos de captura de CO2, se basa en procesos de carbonatación-descarbonatación (o calcinación) de óxido de calcio-carbonato cálcico repetidos de forma cíclica. Nuestro grupo de investigación ha trabajado durante varios años en esta tecnología, con el objeto de comprender los mecanismos de
desactivación conforme se incrementa el número de ciclos. Así, hemos estudiado los mecanismos cinéticos de estos procesos y los cambios microestructurales que tienen lugar a medida que se ciclan los compuestos. En un proyecto coordinado que concluye a finales de año (SOLARTEQH, Retos 2014) hemos realizado ya una propuesta de integración de Ca-Looping para almacenamiento de energía solar. Este proyecto ha dado lugar a una propuesta H2020 (SOCRATCES) aprobada y que comenzará a comienzos del año próximo. En el proyecto CALSOLAR que ahora presentamos se pretende avanzar más en esta idea de integración para incrementar los valores de proyecto eficiencia termoeléctrica. El subproyecto 1 realizará las tareas de coordinación de todo el proyecto. Además, en el subproyecto 1 se realizará la selección, preparación y caracterización de los compuestos a utilizar en el proyecto. En este sentido, se trabajará con empresas mineras que nos facilitarán distintas materias primas (principalmente calizas y dolomitas) con diverso grado de pureza y cristalinidad. Se prepararán compuestos con sílicas nanoestructuradas obtenidas a partir de cascarilla de arroz (suministradas por arroceras del valle del Guadalquivir). Se investigarán compuestos preparados a partir de escorias de acerías (suministrados por dos empresas del sector afincadas en Andalucía) que son ricos en calcio para su aplicación en ciclos de almacenamiento termoquímico. En el subproyecto, se diseñará y construirá un equipo termogravimétrico que permita realizar experimentos en las condiciones realistas de los ciclos de almacenamiento térmico. Así el equipo permitirá trabajar en condiciones de presión absoluta controlada de CO2 y en vapor sobrecalentado. En dicho instrumento se realizarán los ciclos de almacenamiento y se estudiarán las condiciones óptimas de dichos ciclos. Se investigarán los mecanismos cinéticos de carbonatación y descarbonatación y se estudiarán los cambios microestructurales durante el ciclado. En el equipo de investigación está compuesto por personal con gran experiencia en las tareas propuestas y se cuenta con la participación de investigadores extranjeros con gran experiencia en reacciones sólido-gas y en caracterización microestructural por microscopía de alta resolución. Además, participa una investigadora de la empresa Abengoa con extensa experiencia en almacenamiento termoquímico en plantas solares. Se trabajará en este subproyecto de forma totalmente coordinada con los investigadores del subproyecto 2 con idea de establecer conjuntamente las condiciones de proceso óptimas. Finalmente, los resultados obtenidos del proyecto podrán demostrase en la planta piloto que se construye en el marco el proyecto H2020 SOCRATCES


icms