Menú secundario

Proyectos de Investigación

Aplicaciones de Procesos Avanzados de desinfección de aguas con nanomateriales, para la reducción del impacto procedente de presiones urbanas, en el marco de la economía circular




Investigador Principal: Rosa Mosteo Abad (UNIZAR) y Mª Peña Ormad Melero (UNIZAR)
Periodo: 01-12-2022 / 30-11-2024
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: TED2021-129267B-I00
Componentes: María Carmen Hidalgo López (ICMS), Francisca Romero Sarria (ICMS), MªPilar Goñi Cepero (UNIZAR) y Encarnación Rubio Aranda (UNIZAR)
Fotocatálisis Heterogénea: Aplicaciones

Resumen [+]

El agua es uno de los recursos naturales que, por su carácter limitado y variable, tanto en cantidad como en calidad, debe ser protegido con especial intensidad, en consonancia con los Objetivos Medioambientales que apoyan la transición ecológica: el uso sostenible y la protección de los recursos hídricos y marinos, la economía circular, la prevención y control de la contaminación y la protección y recuperación de la biodiversidad y los ecosistemas. Estudios realizados en colaboración con la Confederación Hidrográfica del Ebro indican que las fuentes puntuales urbanas son las presiones que en la mayoría de los casos son la causa del incumplimiento de los objetivos de calidad ambiental establecidos por la DMA. Estos incumplimientos están relacionados principalmente con la contaminación microbiológica en las aguas receptoras de estos vertidos. Generalmente, al no existir una exigencia legal, las instalaciones de tratamiento de aguas residuales no incluyen procesos de desinfección que reduzcan la carga microbiológica de los efluentes y, en consecuencia, estos agentes se incorporan a las aguas naturales, limitando el uso que se hace de ellas, especialmente en el abastecimiento de poblaciones y en el uso recreativo (baño y otros). Asimismo, dicha contaminación en las aguas residuales limita la posibilidad de su posterior reutilización, reduciendo la capacidad de aumentar la disponibilidad de recursos hídricos. Es importante destacar que, la reutilización del agua para el riego agrícola también puede contribuir a la economía circular al recuperar los nutrientes del agua regenerada y aplicarlos a los cultivos y reduciendo la necesidad de uso suplementarias de fertilizantes minerales. Por lo tanto, es necesario intensificar la eficiencia del tratamiento de las aguas residuales mediante procesos no convencionales que mejoren la calidad del agua tratada con el objetivo final de permitir una reutilización segura de los efluentes (reglamento (UE) 2020/741). Por otro lado, el control de más parámetros microbiológicos es esencial para un correcto análisis de aplicación de las tecnologías. Consciente de esta necesidad, el grupo AySA lleva años desarrollando proyectos centrados en procesos convencionales y no convencionales, basados en procesos fotocatalíticos, aplicados a desinfección de aguas y control microbiológico en EDARs. El objetivo principal de este proyecto es seleccionar la mejor tecnología de desinfección de aguas residuales urbanas tratadas para su aplicación a gran escala mediante la mejora de los procesos de oxidación avanzada previamente estudiados en desinfección de este tipo de aguas. Además, el control microbiológico, no sólo de los indicadores bacterianos utilizados convencionalmente, sino también de los protozoos y de las bacterias endosimbióticas que se encuentran en el interior de las amebas, se considera muy relevante en este proyecto ya que, hasta donde sabemos, no existen estudios con una variedad tan amplia de microorganismos potencialmente patógenos. Se espera que este enfoque realista minimice el impacto en aguas receptoras y aumente la reutilización reduciendo el riesgo sanitario y ambiental.


Desarrollo de Nanogeneradores Piezoeléctricos Flexibles y de alta Eficiencia basados en Nanocompuestos Perovskita/PVDF (NANOGEN)




Investigador Principal: Rocio Moriche Tirado
Periodo: 01-12-2022 / 30-11-2024
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: TED2021-131458A-I00
Componentes: Francisco José Gotor Martínez (ICMS), María Jesús Sayagués de Vega (ICMS), Rosalía Poyato Galán (ICMS), Ana Morales Rodríguez (US), Felipe Gutiérrez Mora (US), Ángela Gallardo López (US)
Reactividad de Sólidos

Resumen [+]

Diseño y selección de materiales novedosos para fabricar pilas de combustible de óxido sólido reversibles de alto rendimiento (Layered rSSOCs)




Investigador Principal: Francisco José García García (US) y Juan Gabriel Lozano Suárez (US)
Periodo: 01-12-2022 / 30-11-2024
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: TED2021-132057B-I00
Componentes: Francisco José Gotor Martínez (ICMS), María Jesús Sayagués de Vega (ICMS), Yadir Torres Hernández (US), Isabel Montealegre Meléndez (US), Cristina María Arévalo Mora (US), Ana María Beltrán Custodio (US), Eva María Pérez Soriano (US), Paloma Trueba Muñoz (US)
Reactividad de Sólidos

Resumen [+]

Desarrollo de materiales heteroestructurados basados en biocarbones con propiedades fotofuncionales para aplicaciones en procesos de descontaminación de aguas y desinfección




Investigador Principal: María Carmen Hidalgo López y Francisca Romero Sarria
Periodo: 01-09-2022 / 31-08-2025
Organismo Financiador: Ministerio de Ciencia e Innovación "Generación de Conocimiento"
Código: PID2021-122413NB-I00
Componentes: José Manuel Córdoba Gallego, Concepción Real Pérez, María Dolores Alcalá Gonzalez, José Antonio Navío Santos y Rosa Mosteo Abad (UNIZAR)
Fotocatálisis Heterogénea: Aplicaciones

Resumen [+]

En el presente proyecto de investigación se propone el desarrollo de sistemas fotocatalíticos heteroestructurados (ZnWO4/ZnO, WO3/AgBr, WO3/TiO2, Bi2WO6/TiO2, ZnBi2O4/ZnO, BixTiyOz) acoplados o soportados sobre biocarbones (procedentes de la pirólisis de restos de poda de olivo, cascarilla de arroz y hueso de aceituna y que permiten una vía de revalorización de estos residuos), el estudio de las diferentes variables y métodos de síntesis, su optimización, y su comportamiento fotocatalítico evaluado en la desinfección de aguas y eliminación de contaminantes emergentes. En los últimos años se han estudiado nuevos fotocatalizadores basados en materiales heteroestructurados, donde se desarrollan heterouniones de semiconductores para conseguir una mejor separación espacial de electrones y huecos fotogenerados, obteniendo mayores tiempos de vida de estos portadores, aumentando así la eficiencia de los sistemas. Aunque estos materiales han mostrado buena actividad fotocatalítica en diferentes sustratos estudiados, generalmente presentan valores de superficie específica moderados o bajos, y algunos tienen problemas de estabilidad tras pocos ciclos de reacción.
El proyecto propone el acoplamiento o soporte de estos fotocatalizadores heteroestructurados con biocarbones de diferentes características, con el objetivo de dotarlos de mayor área superficial y aumentar su eficacia y estabilidad para sus aplicaciones como fotocatalizadores; mejorando la capacidad de absorción, estrechando el bad-gap donde el biocarbón puede actuar como fotosensibilizador, mejorando el transporte de electrones, permitiendo una mejor separación de los portadores fotogenerados prolongando su vida útil y proporcionando estabilización y fotoestabilización a los sistemas.
Los biocarbones son materiales ricos en carbono que se obtienen mediante la calcinación de la biomasa en ausencia de oxígeno (pirólisis) y presentan interesantes propiedades, como gran área superficial y alta porosidad, y pueden ser modulados, mediante el control de las condiciones de operación, para obtener la cantidad y el tipo de grupos funcionales deseados en la superficie, hidrofobicidad o hidrofilicidad o diferentes pH superficial.
Los objetivos del proyecto incluyen la caracterización físico-química completa y la optimización de los fotocatalizadores
heteroestructurados/biocarbón para las aplicaciones propuestas bajo diferentes condiciones de operación, como iluminación solar o visible. Se evaluará la eficacia de cada sistema en la eliminación de contaminantes emergentes (antibióticos) y en la inactivación de microorganismos potencialmente patógenos habitualmente presentes en aguas.
La presencia de microorganismos patógenos en las aguas es un tema de especial preocupación debido al riesgo potencial de transmisión de enfermedades y, en consecuencia, es necesario el control microbiano en las aguas. Asimismo, los productos farmacéuticos y de higiene son ampliamente usados hoy en día, llegando hasta las aguas. Sus potenciales efectos adversos sobre la salud humana han llevado a catalogarlos como contaminantes ambientales relevantes de la clase de contaminantes emergentes El proyecto se aborda desde un punto de vista interdisciplinar y en el contexto de la economía circular, revalorizando un residuo (biomasa) para desarrollar fotocatalizadores que den solución a un problema (descontaminación y desinfección de aguas) mediante procesos respetuosos con el medio ambiente (fotocatálisis heterogénea).


Fabricación de materiales porosos de base hierro con características refractarias para sistemas de purificación, uso y almacenaje de hidrógeno (FePoMat2)




Investigador Principal: Ranier Enrique Sepúlveda Ferrer (US) y Ernesto Chicardi Augusto (US)
Periodo: 01-09-2022 / 31-08-2026
Organismo Financiador: Ministerio de Ciencia e Innovación "Generación de Conocimiento"
Código: PID2021-123010OB-I00
Componentes: Dr. Antonio Gabriel Paúl Escolano (US), Dr. Jesús Hernández Saz (US), Dr. Krishnakumar Balu (US) ICMS: Dr. Francisco José Gotor Martínez
Reactividad de Sólidos

Resumen [+]

Reactores estructurados no convencionales para el craqueo catalítico de metano libre de CO2




Investigador Principal: Miguel Angel Centeno Gallego
Periodo: 01-09-2022 / 31-08-2025
Organismo Financiador: Unión Europea
Código: EU240226_01
Componentes: Maria Isabel Domínguez Leal, Leidy Marcela Martínez Tejada, Svetlana Ivanova
Química de Superficies y Catálisis

Resumen [+]

STORMING desarrollará reactores estructurados innovadores calentados con electricidad renovable, para convertir CH4 fósil en H2 libre de CO2 y en nanomateriales de carbono de alto valor para aplicaciones de baterías. Más específicamente, se desarrollarán catalizadores innovadores basados en Fe, altamente activos y fácilmente regenerables mediante procesos que no generen residuos, a través de un protocolo de diseño racional de catalizadores, que combina estudios teóricos (Teoría del Funcional de la Densidad y Cálculos de Dinámica Molecular) y experimentales (cluster), todos de ellos asistidos por caracterización in situ y operando y herramientas de Machine Learning. La electrificación (con calentamiento por microondas o por efecto joule) de reactores estructurados, diseñados por fluidodinámica computacional y preparados mediante impresión 3D, permitirá un control térmico preciso que dará como resultado una alta eficiencia energética. El proyecto validará, en un nivel 5 de TRL, la tecnología catalítica más prometedora (elegida con criterios tecnológicos, económicos y ambientales) para producir H2 con eficiencia energética (> 60 %), cero emisiones netas y con un coste hasta un 10 % menor al del proceso convencional. La difusión y comunicación de los resultados impulsará la aceptación social de las tecnologías relacionadas con el H2 y la participación de las partes interesadas en la explotación y el despliegue de procesos a corto plazo. La clave para alcanzar los desafiantes objetivos de STORMING es el muy alto grado de complementariedad e interdisciplinaridad de los grupos que forman el consorcio, donde las ciencias básicas y aplicadas se fusionan con la ingeniería, la informática y las ciencias sociales. El Grupo del ICMS implicado llevará a cabo el desarrollo del catalizador desde la preparación de los catalizadores en polvo hasta su washcoating sobre soportes estructurados. CSIC participa como miembro del consorcio, participando la Universidad de Sevilla como entidad asociada.

https://cordis.europa.eu/project/id/101069690


Biosondas basadas en lantánidos para la obtención de bioimagen mediante resonancia magnética y luminiscencia persistente




Investigador Principal: Ana Isabel Becerro Nieto y Manuel Ocaña Jurado
Periodo: 01-09-2022 / 31-08-2025
Organismo Financiador: Ministerio de Ciencia e Innovación "Generación de Conocimiento"
Código: PID2021-122328OB-100
Componentes: Nuria O. Núñez Álvarez
Materiales Coloidales

Resumen [+]

El objetivo general de este proyecto es el desarrollo de nuevos agentes de contraste (CAs) para mejorar el diagnóstico médico mediante el uso de dos técnicas avanzadas de imagen como la resonancia magnética (MRI) y la imagen luminiscente. Específicamente, se planea desarrollar CAs de MRI duales (T1-T2) y sondas con luminiscencia persistente (PersL). La obtención de dos imágenes de resonancia (denominadas imagen promediada en T1 y en T2) es muy útil pues ayuda a eliminar falsos positivos mediante la validación cruzada de ambas. La ventaja de los agentes de contraste de MRI duales frente a los simples es que un único agente permite obtener los dos tipos de imágenes, evitando así la exposición del paciente a dos agentes externos. Por su parte, el empleo de sondas con PersL para la obtención de imagen luminiscente permite mejorar notablemente la relación señal ruido de la imagen puesto que, al irradiar la sonda fuera del organismo, se evita la autofluorescencia de los tejidos biológicos. Además, la eliminación de la irradiación directa (normalmente luz ultravioleta) evita daños a dichos tejidos. Ambos tipos de CAs (MRI y PersL) consistirán en nanopartículas (NPs) uniformes de diversas matrices inorgánicas cuidadosamente seleccionadas basadas en cationes lantánidos, cuyas propiedades magnéticas y luminiscentes los hacen ideales para las aplicaciones perseguidas. En cuanto a los CAs de MRI, se abordarán dos tipos de arquitecturas consistentes en NPs de fase única, donde los lantánidos activos en T2 (Dy3+) y en T1 (Gd3+ o Mn2+) se encuentran en disolución sólida, y NPs con arquitectura core-shell, donde los iones T2 se localizan en el núcleo y los T1, en la corteza. En ambos casos, se ensayarán matrices de fosfato, vanadato y molibdato, que han mostrado ser adecuadas en el caso de CAs de MRI simples. Por su parte, en el caso de las sondas para imagen luminiscente se planea sintetizar, en forma de NPs uniformes, diversos compuestos que han mostrado excelente luminiscencia persistente pero que hasta el momento solo se han fabricado en forma másica, no adecuada para aplicaciones biomédicas. Concretamente se abordarán diversas matrices de germanato y galato dopadas con iones lantánidos (Pr3+, Yb3+) que emiten luz infrarroja dentro de las ventanas biológicas, donde la radiación no es absorbida por los tejidos biológicos, aumentando así su capacidad de penetración y facilitando por tanto la obtención de la bioimagen. Ambos tipos de NPs (CAs duales T1-T2 y NPs con PersL) serán sometidas a procesos de funcionalización y bioconjugación para para dotarlas de estabilidad coloidal y de capacidad de reconocimiento de tumores específicos. Se analizará asimismo su biocompatibilidad mediante el análisis de la citotoxicidad y, finalmente, los CAs óptimos se aplicarán en la obtención de imagen de resonancia magnética e imagen luminiscente, in vitro e in vivo, utilizando ratones como modelo. El equipo investigador posee sobrada experiencia en la síntesis de NPs inorgánicas basadas en elementos lantánidos y dispone de la mayoría de los medios necesarios para su caracterización morfológica, estructural y química, así como para el estudio de sus propiedades luminiscentes. Además, dicho equipo cuenta con el apoyo de investigadores de otras instituciones que colaborarán en el desarrollo de algunas tareas del proyecto relacionadas con los estudios de bioconjugación, biocompatibilidad y registro de imagen, lo que garantiza el correcto desarrollo del mismo.


Peliculas delgadas nanoestructuradas crecidas por pulverización catódica con plasmas de helio y otros gases ligeros




Investigador Principal: Asunción Fernández Camacho
Periodo: 01-09-2022 / 31-08-2026
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: PID2021-124439NB-I00
Componentes: María del Carmen Jiménez de Haro
Materiales Nanoestructurados y Microestructura

Resumen [+]

La pulverización catódica (magnetron sputtering-MS) es una metodología de deposición física desde fase vapor (PVD) muy usada para la fabricación de películas delgadas y recubrimientos. En la técnica MS se emplean comúnmente mezclas de Ar ó Ar/N2-O2 (MS reactivo) como gas de proceso que se ionizará en una descarga para crear el plasma adecuado y pulverizar el material del blanco. El grupo NanoMatMicro ha sido pionero en la introducción de plasmas de helio en la tecnología de pulverización catódica. Aunque la tasa de deposición puede bajar, demostramos la formación en condiciones controladas de nanoporosidad y/o gas atrapado (nanoburbujas de He y N2) en las películas producidas. En particular las láminas sólidas que contienen nanoporos llenos de gas tienen características únicas: permiten atrapar una gran cantidad de gas en un estado condensado con alta estabilidad y proporcionan una ruta para modificar las propiedades del material preparado. La técnica MS es fácil de escalar y mucho más barata que las tecnologías alternativas basadas en la implantación de iones de alta energía. Sobre esta base, proponemos seguir desarrollando una metodología bottom-up innovadora y versátil para fabricar películas delgadas (Si, C, otros metaloides y metales) que promueva la porosidad abierta o, por el contrario, permita estabilizar las "nanoburbujas" atrapadas del gas de proceso (He , Ne, N2, H2 y sus isótopos).

La metodología se investigará principalmente para fabricar blancos sólidos y estándares del gas atrapado para estudios de reacciones nucleares. Nuestro trabajo permitirá que los gases ligeros y sus isótopos estén disponibles en un estado condensado y en un formato fácil de manejar sin necesidad de celdas de alta presión o dispositivos criogénicos. Junto con una red de investigadores colaboradores de las áreas de Física Nuclear y Astrofísica, nuestro objetivo es llevar esta aplicación desde la prueba de concepto hasta los experimentos finales en grandes instalaciones. También cabe mencionar que el control del proceso desde estructuras con gas atrapado a nanoporosas permitirá estudiar aplicaciones adicionales en el proyecto como dispositivos ópticos, emisores de luz UV o recubrimientos catalíticos. El proyecto incluye el diseño y control de proceso en nuestras cámaras de MS para trabajar con los diferentes gases ligeros aquí propuestos. Se seguirán implementando metodologías de bajo consumo para isótopos escasos (por ejemplo, 3He). El objetivo final es implementar una configuración mejorada de MS y desarrollar la metodología bottom-up propuesta en términos de combinaciones de matriz y gas, mezclas de gases, variedad de soportes y diseños autosoportados o multicapa que permitan las aplicaciones innovadoras.

Una tarea importante es también determinar el mecanismo de crecimiento de las láminas. La caracterización del plasma durante el proceso de deposición y el uso de la herramienta de simulación SRIM pueden contribuir en gran medida a una mejor comprensión y control de los procesos de crecimiento. Para comprender la microestructura, composición y propiedades físico-químicas de los nuevos materiales, se llevará a cabo una caracterización química y microestructural en la nanoescala con una variedad de técnicas. Destacan las microscopías electrónicas (TEM y SEM) que incluyen la espectroscopia de pérdida de energía de electrones y las técnicas de análisis por haz de iones para la determinación de la composición elemental en profundidad.


Biomasa para la desalación por desionización capacitiva y almacenamiento de energía




Investigador Principal: Joaquín Ramírez Rico
Periodo: 01-01-2022 / 31-12-2022
Organismo Financiador: Junta de Andalucía
Código: US-1380856
Componentes: Alfonso Bravo León, Manuel Jiménez Melendo, Julián Martínez Fernández
Materiales de Diseño para la Energía y Medioambiente

Resumen [+]

La presión sobre nuestros recursos hídricos, el calentamiento global y la escasez de combustibles fósiles son tres de los principales desafíos que, como sociedad, tendremos que abordar en la próxima década. Las soluciones a estos desafíos se basan en el desarrollo de nuevas tecnologías que permitan el uso eficiente y la reutilización de los recursos hídricos, así como en nuevos sistemas de almacenamiento de alta potencia y alta densidad de energía que se combinen con fuentes renovables. Estos dos temas aparentemente dispares dependen de una tecnología: electrodos y adsorbentes de carbono. Tanto los sistemas de desalinización y purificación como los supercondensadores y las baterías usan materiales basados en carbono con propiedades controladas mediante procesos físico-químicos. Una de las rutas más interesantes para la síntesis de estos materiales es la pirólisis de biomasa, un precursor barato y ampliamente disponible. La desionización capacitiva (CDI) es una tecnología emergente para aplicaciones en desalación que utiliza una pequeña diferencia de potencial eléctrico entre dos electrodos de carbono para eliminar iones de una solución mediante electrosorción. El pequeño potencial necesario para el proceso permite alimentar un dispositivo de CDI mediante paneles solares, lo que hace que esta tecnología sea útil en sistemas portátiles o fácilmente desplegables. Los supercondensadores y las baterías también se basan en mecanismos de adsorción y/o intercalación para almacenar carga eléctrica, en un proceso que es esencialmente el mismo, pero adaptado en este caso a maximizar la densidad de energía almacenada. Ambas tecnologías se basan en el uso de electrodos de carbono, con propiedades y estructura adaptadas a cada una de las aplicaciones.
El objetivo principal de esta propuesta es explorar el uso de residuos de biomasa como precursores de materiales de carbono con propiedades controladas para aplicaciones electroquímicas relacionadas la energía y el medio ambiente, con un enfoque en dos aplicaciones principales: almacenamiento de energía en sistemas de supercondensadores y baterías, y desalación por CDI. La ruta de preparación de será la pirólisis de precursores de biomasa, centrándonos en productos de desecho de explotaciones agrícolas. Para la obtención de electrodos monolíticos usaremos madera y tableros prensados de fibra. Desarrollaremos métodos físicos y químicos con el fin de controlar sus propiedades para mejorar su capacitancia o selectividad de iones.
Construiremos un dispositivo de CDI a escala laboratorio para determinar el comportamiento de desalinización y correlacionarlo con información microscópica obtenida por técnicas avanzadas como microscopía electrónica, experimentos de difracción de dispersión total, isotermas de adsorción de nitrógeno y otros. Estudiaremos las propiedades electroquímicas de estos materiales y las correlacionaremos con la estructura y las condiciones de procesado. Nuestro objetivo será optimizar los electrodos de carbono derivados de la biomasa para aplicaciones específicas y desarrollar materiales de carbono derivados de la biomasa ‘a la carta’.


Nueva generación de nanorecubrimientos dieléctricos conformales para dispositivos electrónicos emergentes por tecnología de plasma (PlasmaDielec)




Investigador Principal: Francisco Javier Aparicio Rebollo
Periodo: 01-01-2022 / 31-05-2023
Organismo Financiador: Junta de Andalucía
Código: US-1381057
Componentes: Ana Isabel Borras Martos, Ramon Escobar Galindo, Lidia Contreras Bernal
Nanotecnología en Superficies y Plasma

Resumen [+]

Los avances recientes en nanomateriales y técnicas de procesado están conduciendo al desarrollo de nanodispositivos de elevada miniaturización y nuevas funcionalidades en el campo de los dispositivos electrónicos flexibles. El proyecto aborda el desarrollo de nueva generación de materiales dieléctricos en forma de láminas delgadas de espesor nanométrico mediante tecnología de plasma teniendo como meta final la fabricación de transistores orgánicos flexibles de elevadas prestaciones. La metodología de deposición por plasma propuesta es una técnica pionera desarrollada en nuestro laboratorio que permite regular de manera controlada las propiedades dieléctricas y la interacción con líquidos de estos recubrimientos, así como su deposición conformal sobre nanoestructuras de elevada relación de aspecto como son nanohilos y nanotubos de uso en electrónica molecular. La técnica de plasma propuesta es completamente compatible con los procesos actualmente empleados a nivel industrial en la fabricación de microdispositivos y nanocomponentes electrónicos. Estas ventajas y los resultados previos de la técnica de plasma propuesta en el desarrollo de materiales fotónicos y sensores avalan la viabilidad del proyecto. Como resultados PlasmaDielec se establecerá las bases para el desarrollo de nuevos procedimientos y una nueva generación de materiales dieléctricos de para el futuro desarrollo de la electrónica flexible.


Diseño de Catalizadores Avanzados para procesos de HDO: un apuesta revolucionaria para la conversión de biomasa: CLEVER-BIO




Investigador Principal: Tomás Ramírez Reina
Periodo: 05-10-2021 / 31-12-2022
Organismo Financiador: Junta de Andalucía
Código: P20_00667
Componentes: Luis Francisco Bobadilla Baladrón, José Antonio Odriozola Gordón, Laura Pastor Pérez, Anna Dimitrova Penkova
Química de Superficies y Catálisis

Resumen [+]

CLEVER-BIO propone un concepto revolucionario para la producción de biocombustibles limitando la emisión de gases de efecto invernadero sembrando las bases de una tecnología verde: conversión de residuos a combustibles y productos de alto valor. La idea central de CLEVER-BIO es el Desarrollo de catalizadores avanzados para llevar a cabo la reacción de HDO de bio-aceites derivados de lignina. El proyecto se llevara a cabo en 24 meses y comprende un programa intenso de investigación multidisciplinar con fuerte participación de instituciones internacionales.


Materiales Biomórficos para almacenamiento de energía




Investigador Principal: Joaquín Ramírez Rico
Periodo: 05-10-2021 / 31-12-2022
Organismo Financiador: Junta de Andalucía
Código: P20_011860 - PAIDI 2020
Componentes: María Dolores Alba Carranza, Alfonso Bravo León, Manuel Jiménez Melendo, Esperanza Pavón González
Materiales de Diseño para la Energía y Medioambiente

Resumen [+]

El objetivo principal de esta propuesta es desarrollar materiales de carbono a medida para aplicaciones relacionadas con tecnologías energéticas y medioambientales, con un enfoque en tres aplicaciones principales: almacenamiento de energía, soportes de catalizador en pilas de combustible y electrolizadores y el almacenamiento y captura de gas, especialmente hidrógeno y dióxido de carbono. Proponemos producir estos materiales mediante pirólisis de desecho de biomasa y otros residuos orgánicos. El uso de biomasa como precursor en la síntesis de materiales tiene interés dada su abundancia y bajo costo, y presenta una oportunidad para convertir los residuos de la industria agroalimentaria local en un producto de alto valor añadido.

BioMatStor desarrolla I + D en diferentes niveles de aplicación: fundamental para la caracterización y fabricación de la ciencia de los materiales, y ciencia aplicada para el modelado y caracterización de sistemas de almacenamiento de energía. Este proyecto combina ciencia de materiales e ingeniería energética con el objetivo de obtener materiales de alto rendimiento para una amplia gama de aplicaciones en la producción y almacenamiento de energía. Proponemos un enfoque multidisciplinar que tiene su base en la excelencia científica, responde a los desafíos sociales y puede resultar en una transferencia de tecnología significativa a la industria. Este proyecto también aborda los objetivos socio-estratégicos de Horizonte 2020, ya que tiene como objetivo contribuir a la mejora de nuestro entorno a través de la ciencia avanzada y la investigación multidisciplinar, y está totalmente alineado con los objetivos y políticas de la Unión Europea, Horizon2020, SET Plan y los objetivos RIS3 de la región de Andalucía.


Diseño de fotocatalizadores altamente eficientes mediante control de la nanoescala para la producción de H2 NanoLight2H2




Investigador Principal: Gerardo Colón Ibañez
Periodo: 05-10-2021 / 31-12-2022
Organismo Financiador: Junta de Andalucía
Código: P20-00156 - PAIDI 2020
Componentes: Alfonso Caballero Martínez, Rosa Pereñiguez Rodríguez, Juan Pedro Holgado Vázquez
Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Resumen [+]

El objetivo principal de este proyecto es el desarrollo de catalizadores heteroestructurados basados en óxidos semiconductores altamente eficientes (Nb2O5, WO3, TiO2 y Fe2O3) y g-C3N4, con control a nivel de la nanoescala, y potencial aplicación en la reacción de fotoreformado de alcoholes para la producción de H2.  Así mismo, se pretende estudiar la optimización del proceso catalítico mediante una aproximación multi-catalítica, mediante la combinación de termocatálisis y fotocatálisis. La producción fotocatalítica de H2 una reacción de gran interés desde el punto de vista energético mediante el uso de una tecnología limpia y sostenible como la fotocatálisis. En este proyecto se pretende el desarrollo de sistemas altamente eficientes para la producción de hidrógeno. Se prestará especial atención al diseño de heteroestructuras que permitan la optimización del proceso fotoinducido. De igual modo se incidirá en el uso de co-catalizadores alternativos a los tradicionales metales nobles; sistemas basados en metales de transición (Cu, Co, Ni), así como estructuras bimetálicas con metales nobles formado aleaciones o core-shell. Junto al proceso fotocatalítico en fase líquida, se estudiará la viabilidad de un proceso de fotoreformado en fase gas, basándonos en recientes estudios que ponen de manifiesto el efecto sinérgico de una aproximación foto-termo catalítica en estos procesos. De esta forma esta propuesta pretende abordar de forma ambiciosa el aumento de la eficiencia del proceso fotocatalítico a fin de poder plantear esta tecnología a mayor escala. En este sentido, además de los estudios de optimización de los catalizadores y del proceso fotocatalítico, se afrontará como algo primordial su escalado a planta solar piloto. 


Integración de Energía y Gasificación para procesos sostenibles (GENIUS)




Investigador Principal: José Antonio Odriozola Gordón
Periodo: 05-10-2021 / 31-12-2022
Organismo Financiador: Junta de Andalucía
Código: P20_00594
Componentes: Luis Francisco Bobadilla Baladrón, Laura Pastor Pérez, Anna Dimitrova Penkova, Tomás Ramírez Reina
Química de Superficies y Catálisis

Resumen [+]

GENIUS representa una propuesta innovadora para la conversion de bio-residuos en vectores energeticos sostenibles. El proyecto propone la combinacion de tecnologias maduras como la gasificacion y reformado acuaso para aportar soluciones cataliticas al proceso de conversion de bioresiduos. GENIUS desarrollara reactores de micronales que permiten el diseño de plantas compactas para el procesado de residuos lo que facilita su implementacion en aplicaciones deslocalizadas como por ejemplo explotaciones agricolas donde los residuos pueden convertirse en productos de valor añadido


Nanoscopías y Espectroscopías integradas para el análisis en la nano-escala de nuevos materiales funcionales




Investigador Principal: Asunción Fernández Camacho
Periodo: 05-10-2021 / 31-12-2022
Organismo Financiador: Junta de Andalucía
Código: P20_00239 - PAIDI 2020
Componentes: M. Carmen Jiménez de Haro
Materiales Nanoestructurados y Microestructura

Resumen [+]

El desarrollo de los nanomateriales y materiales funcionales, así como sus aplicaciones nanotecnológicas, vienen determinados por las capacidades actuales para la caracterización de la microestructura, la composición y las propiedades de los materiales en la nano-escala. El proyecto propone potenciar una investigación de frontera en la caracterización microestructural de materiales. Se integrarán las técnicas nanoscópicas y espectroscópicas, ligadas a la microscopía electrónica (sonda de electrones), con las técnicas asociadas a las sondas de fotones (rayos-X) y de haces de iones (técnicas IBA en general). La caracterización se asociará a materiales funcionales seleccionados de alto interés actual en la temática de recubrimientos y láminas delgadas en las que el equipo de trabajo es experto.

Será objetivo central el desarrollo y aplicación de manera integrada de las técnicas disponibles con múltiples sondas, tanto en el ICMS, como en otros centros de las Universidades de Sevilla (CITIUS, CNA) y Cádiz (servicios centrales). Igualmente a través de colaboraciones y solicitudes de medidas se tendrá acceso a otras instalaciones internacionales.

En el proyecto se dispondrá de materiales seleccionados en dos tecnologías emergentes: i) Láminas delgadas y recubrimientos nanoporosos que estabilizan gases a ultra-alta densidad y presión. ii) Catalizadores para los procesos de almacenamiento y generación de hidrógeno en líquidos orgánicos portadores de hidrógeno (LOHCs). La caracterización avanzada que se propone contribuirá a la comprensión fundamental de las relaciones síntesis-microestructura-propiedades con el objetivo de alcanzar un diseño racional de nuevos materiales funcionales en las líneas seleccionadas. El proyecto incide directamente en las tecnologías facilitadoras o emergentes como son “la nanotecnología” y “los materiales avanzados”. Incide también en los retos sociales y objetivos RIS3 de Andalucía en relación al almacenamiento de energías renovables.


icms