Menú secundario

Artículos SCI



2021


Features of coupled AgBr/WO3 materials as potential photocatalysts


Puga, F.; Navío, J.A.; Hidalgo, M.C.
Journal of Alloys and Compounds, 867 (2021) 159191
Fotocatálisis Heterogénea: Aplicaciones

ABSTRACT

AgBr/WO3 composite photocatalysts with different selected molar AgBr/WO3 ratios were prepared and widely characterized by XRD, N2-adsorption, SEM, TEM, UV–visible/DRS and XPS techniques. The samples were tested using rhodamine B (RhB) or caffeine, under two illumination conditions (UV and visible light). Although AgBr and WO3 pristine materials have relatively low band gap values (2.6 eV and 2.8 eV, respectively), they exhibit low or no photocatalytic activity under visible light, at least for caffeine degradation. This fact may be mainly related to a high recombination rate of photogenerated charge carriers in these samples. However, the coupling of both leads to a substantial improvement in the degradation of caffeine and RhB under both UV and visible lighting conditions. The increased photocatalytic activity found in the coupled systems with respect to the pristine materials can be attributed to the formation of a type II heterostructure in the coupled AgBr/WO3 samples. Our results show that for AgBr/WO3 coupled systems, kinetic degradation profiles have clear dependence on the molar percentages of the coupled pristine materials, as well as on the nature (sensitizing or not sensitizing effect) of the substrate. For caffeine photodegradation, the best performance was obtained when AgBr/WO3(10–15%) catalysts were used. The AgBr/WO3(20%) sample showed the best photocatalytic activity for rhodamine B degradation, exhibiting also excellent dark adsorption capacity (40–45%). Additionally, studies of activity in five consecutive tests showed a good RhB degradation during the successive reuses being involving a N-de-ethylation mechanism with the main O2•− radicals participation; relatively low mineralization percentages were observed, both under UV and visible light conditions. In these successive runs, no silver leaching to the medium was observed but a change from AgBr towards Ag2CO3 and/or AgxO was produced at the catalyst surface. These features should be known in the use of these systems as potential photocatalysts for practical applications.


Junio, 2021 | DOI: 10.1016/j.jallcom.2021.159191

High-temperature solar-selective coatings based on Cr(Al)N. Part 1: Microstructure and optical properties of CrNy and Cr1-xAlxNy films prepared by DC/HiPIMS


Rojas, TC; Caro, A; Lozano, G.; Sanchez-Lopez, JC
Solar Energy Materials and Solar Cells, 223 (2021) 110951
Tribología y Protección de Superficies

ABSTRACT

In order to explore the potentialities of Cr1-x(Al)xNy materials in multilayer-based solar selective coatings (SSC) for high temperature applications (T > 500 °C), the optical behavior of Cr1-x(Al)xNy films is studied in this work. Two sets of layers (CrNy and Cr1-xAlxNy) were prepared by direct current (DC) and high-power impulse magnetron sputtering (HiPIMS) technology. The deposition parameters: N2 flux, HiPIMS frequency and aluminum sputtering power, were modified to get a wide variety of stoichiometries. The composition, morphology, phases and electronic structure of the films were characterized in depth. The optical behavior was determined by UV–Vis–NIR and FTIR spectroscopies, and the optical constants were obtained from the measured transmittance and reflectance spectra based on appropriate dielectric function models. Our results indicate that small changes in the layer composition influence the optical constants. In particular, a metallic-like behavior was obtained for CrNy layers with N vacancies (CrN0.95 and CrN0.67 films) while a semiconductor-like behavior was observed for CrN1.08. Thus, the CrNy films can be used as effective absorber layer in multilayer-based SSC, and namely, the CrN0.67 film as an IR reflector/absorber layer too. Likewise, the optical properties of Cr1-xAlxNy layers can also be tuned from metallic to semiconductor-like behavior depending on the chemical composition. Indeed, the absorption coefficients of Cr1-xAlxNy films with optimized Al content and N-vacancies are comparable to those reported for state-of-the-art materials such as TiAlN or TiAlCrN. In addition, a Cr0.96Al0.04N0.89 film was found to be a suitable IR reflector/absorber layer.


Mayo, 2021 | DOI: 10.1016/j.solmat.2020.110951

Facile synthesis and characterization of a novel 1,2,4,5-benzene tetracarboxylic acid doped polyaniline@zinc phosphate nanocomposite for highly efficient removal of hazardous hexavalent chromium ions from water


Abdelghani Hsini, Yassine Naciri, Mohamed Benafqir, Zeeshan Ajmal, Nouh Aarab, Mohamed Laabd, J.A. Navío, F. Puga, Rabah Boukherroub, Bahcine Bakiz, Abdallah Albourine
Journal of Colloid and Interface Science, 585 (2021) 560-573
Fotocatálisis Heterogénea: Aplicaciones

ABSTRACT

The present study describes the preparation of a novel 1,2,4,5-benzene tetracarboxylic acid doped polyaniline@zinc phosphate (BTCA-PANI@ZnP) nanocomposite via a facile two-step procedure. Thereafter, the as-prepared composite material adsorption characteristics for Cr(VI) ions removal were evaluated under batch adsorption. Kinetic approach studies for Cr(VI) removal, clearly demonstrated that the results of the adsorption process followed the pseudo second order and Langmuir models. The thermodynamic study indicated a spontaneous and endothermic process. Furthermore, higher monolayer adsorption was determined to be 933.88 mg g1 . In addition, the capability study regarding Cr(VI) ions adsorption over BTCA-PANI@ZnP nanocomposite clearly revealed that our method is suitable for large scale application. X-ray photoelectron spectroscopy (XPS) analysis confirmed Cr(VI) adsorption on the BTCA-PANI@ZnP surface, followed by its subsequent reduction to Cr(III). Thus, the occurrence of external mass transfer, electrostatic attraction and reduction phenomenon were considered as main mechanistic pathways of Cr(VI) ions removal. The superior adsorption performance of the material, the multidimensional characteristics of the surface and the involvement of multiple removal mechanisms clearly demonstrated the potential applicability of the BTCA-PANI@ZnP material as an effective alternative for the removal of Cr(VI) ions from wastewater.


Marzo, 2021 | DOI: 10.1016/j.jcis.2020.10.036

Functionalized biochars as supports for Pd/C catalysts for efficient hydrogen production from formic acid


Santos, JL; Megias-Sayago, C; Ivanova, S; Centeno, MA; Odriozola, JA
Applied Catalysis B-Environmental, 282 (2021) 119615
Química de Superficies y Catálisis

ABSTRACT

Biomass waste product was used to generate biochars as catalytic supports for selective hydrogen production from formic acid. The supports were obtained after pyrolysis in CO2 atmosphere of non-pretreated and che-mically ZnCl2 activated raw materials (vine shoot and crystalline cellulose). The support series includes materials with different textural properties and surface chemistry. The support nature and especially textural properties firstly affects significantly Pd size and dispersion and its interaction with the support and secondly influence in a great extent the catalytic behavior of the final material. The presence of prevailing mesoporous character appeared to be the most important parameter influencing formic acid dehydrogenation and overall hydrogen production.


Marzo, 2021 | DOI: 10.1016/j.apcatb.2020.119615

Zirconium retention for minimizing environmental risk: Role of counterion and clay mineral


Montes, L; Pavon, E; Cota, A; Alba
Chemosphere, 267 (2021) 128914
Materiales de Diseño para la Energía y Medioambiente

ABSTRACT

Zr(IV) together with U(IV) are the major components of high-level radionuclide waste (HLRW) and spent nuclear fuel (SNF) from nuclear power plants. Thus, their retention in the waste disposal is of great importance for the environmental risk control. Here, the influence of clay minerals on the retention of Zr(IV), as component of the nuclear waste and as chemical analogues of U(IV), has been evaluated. Three clay minerals, two bentonites and one saponite, were hydrothermally treated with three zirconium salts. A structural study at long-range order by X-ray diffraction and short-range order by NMR was performed to evaluate the generation of new zirconium phases and degradation of the clay minerals. Three immobilization mechanisms were observed: i) cation exchange of ZrO2+ or Zr4+ by clay minerals, ii) the precipitation/crystallization of ZrO2, and, iii) the chemical interaction of zirconium with the clay minerals, with the formation of zirconium silicates. 


Marzo, 2021 | DOI: 10.1016/j.chemosphere.2020.128914

Cation-driven electrical conductivity in Ta-doped orthorhombic zirconia ceramics


Moshtaghioun, BM; Laguna-Bercero, MA; Pena, JI; Gomez-Garcia, D; Dominguez-Rodriguez, A
Ceramics International, 47 (2021) 7248-7522
Propiedades Mecánicas de Sólidos

ABSTRACT

This paper is devoted to the study of the electrical conductivity of tantalum-doped zirconia ceramics prepared by spark plasma sintering. In this study, the temperature dependence of conductivity in as-prepared specimens and in those previously annealed in air is determined and compared. A semi-empirical model, which is based on the oxidation states of the cations, has been developed and successfully assessed. According to this, the conductivity is basically controlled by the diffusion of tetravalent zirconium cations in both cases, although the concentration of these species varies drastically with the amount of induced oxygen vacancies. This is a quite unexpected fact, since conductivity is normally controlled by anionic diffusion in zirconia ceramics. This option is forbidden here due to the presence of substitutional pentavalent cations. Therefore, conductivity values are much lower than those reported in trivalent or divalent substitutional cation doped zirconia ceramics.


Marzo, 2021 | DOI: 10.1016/j.ceramint.2020.10.227

Synergizing carbon capture and utilization in a biogas upgrading plant based on calcium chloride: Scaling-up and profitability analysis


Baena-Moreno, FM; Reina, TR; Rodriguez-Galan, M; Navarrete, B; Vilches, LF
Science of The Total Environment, 758 (2021) 143645
Química de Superficies y Catálisis

ABSTRACT

Herein we analyze the profitability of a novel regenerative process to synergize biogas upgrading and carbon dioxide utilization. Our proposal is a promising alternative which allows to obtain calcium carbonate as added value product while going beyond traditional biogas upgrading methods with high thermal energy consumption. Recently we have demonstrated the experimental viability of this route. In this work, both the scale-up and the profitability of the process are presented. Furthermore, we analyze three representative scenarios to undertake a techno-economic study of the proposed circular economy process. The scale-up results demonstrate the technical viability of our proposal. The precipitation efficiency and the product quality are still remarkable with the increase of the reactor size. The techno-economic analysis reveals that the implementation of this circular economy strategy is unprofitable without subsidies. Nonetheless, the results are somehow encouraging as the subsides needed to reach profitability are lower than in other biogas upgrading and carbon dioxide utilization proposals. Indeed, for the best-case scenario, a feed-in tariff incentive of 4.3 (sic)/MWh makes the approach profitable. A sensitivity study through tornado analysis is also presented, revealing the importance of reducing bipolar membrane electrodialysis energy consumption. Overall our study envisages the big challenge that the EU faces during the forthcoming years. The evolution towards bio-based and circular economies requires the availability of economic resources and progress on engineering technologies.


Marzo, 2021 | DOI: 10.1016/j.scitotenv.2020.143645

Enhanced UV and visible light photocatalytic properties of synthesized AgBr/SnO2 composites


Puga, F.; Navío, J.A.; Hidalgo, M.C.
Separation and Purification Tecnology, 257 (2021) 117948
Fotocatálisis Heterogénea: Aplicaciones

ABSTRACT

Composites (AgBr/SnO2) comprised of AgBr and SnO2 with different molar % of bare SnO2, have been synthesized by simple precipitation methods; the bare SnO2 used, was synthesized by hydrothermal procedure. Samples have been characterized by X-ray diffraction (XRD), N2-adsorption, UV–vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of the as-prepared photocatalysts was evaluated through photocatalytic degradation of rhodamine B (RhB) and caffeic acid (CAFA) under UV and Visible illumination. In photocatalytic degradation studies, for both substrates, conversion rates of around 95% were found in 45 min of both UV-illumination and 85% under visible lighting. These conversion rates were superior than the conversion rates of pure parental components, AgBr and SnO2 under the same experimental conditions. At least, for RhB no loss of photocatalytic activity has been observed after five recycles although the mineralization degree progressively diminished along the recycles. The enhanced photocatalytic degradation of AgBr/SnO2 compounds was attributed, in part, to a synergistic increase in adsorption viability, as well as to the effective separation of photoinduced load carriers that resulted from the formation of a heterojunction according to the type II junction. Radical scavengers’ experiments indicated that active oxidant species as O2.−, ·OH and h+ all are involved in this photocatalytic system, although it seems that O2.− played the major role in the photocatalytic degrading of RhB by AgBr/SnO2 composites. In summary, coupling AgBr with SnO2 remarkably improves the photocatalytic activity under both UV and visible-illumination with respect to the parental components. These features open the route to future applications of this material in the field of environmental remediation.


Febrero, 2021 | DOI: 10.1016/j.seppur.2020.117948

Photocatalytic oxidation of pollutants in gas-phase via Ag3PO4-based semiconductor photocatalysts: Recent progress, new trends, and future perspectives


Y. Naciri; A. Hsini; A. Bouziani; R. Djellabi; Z. Ajmal; M. Laabd; J.A. Navío; A. Mills; C.L. Bianchi; H.Li; B. Bakiz; A. Albourine
Critical Reviews in Environmental Science and Technology,
Fotocatálisis Heterogénea: Aplicaciones

ABSTRACT

Air pollution has become a significant challenge for both developing and developed nations. due to its close association with numerous fatal diseases such as cancer, respiratory, heart attack, and brain stroke. Over recent years, heterogeneous semiconductor photocatalysis has emerged as an effective approach to air remediation due to the ease of scale-up, ready application in the field, use of solar light and ready availability of a number of different effective photocatalysts. To date, most work in this area has been conducted using UV-absorbing photocatalysts, such as TiO2 and ZnO; However, recent studies have revealed Ag3PO4 as an attractive, visible-light-absorbing alternative, with a bandgap of 2.43 eV. In particular, this material has been shown to be an excellent photocatalyst for the removal of many types of pollutants in the gas phase. However, the widespread application of Ag3PO4 is restricted due to its tendency to undergo photoanodic corrosion and the poor reducing power of its photogenerated conductance band electrons, which are unable to reduce O2 to superoxide •O2 −. These limitations are critically evaluated in this review. In addition, recent studies on the modification of Ag3PO4 via combination with the conventional heterojunctions or Z-scheme junctions, as well as the photocatalytic mechanistic pathways for enhanced gas-pollutants removal, are summarized and discussed. Finally, an overview is given on the future developments that are required in order to overcome these challenges and so stimulate further research into this promising field.


Febrero, 2021 | DOI: 10.1080/10643389.2021.1877977

Patterning and control of the nanostructure in plasma thin films with acoustic waves: mechanical vs. electrical polarization effects


García-Valenzuela, A.; Fakhouri, A.; Oliva-Ramírez, M.; Rico-Gavira, V.; Rojas, T.C.; Alvarez, R.; Menzel, S.B.; Palmero, A.; Winkler, A.; González-Elipe, A.R.
Materials Horizons, 8 (2021) 515-524
Nanotecnología en Superficies y Plasma - Tribología y Protección de Superficies

ABSTRACT

Nanostructuration and 2D patterning of thin films are common strategies to fabricate biomimetic surfaces and components for microfluidic, microelectronic or photonic applications. This work presents the fundamentals of a surface nanotechnology procedure for laterally tailoring the nanostructure and crystalline structure of thin films that are plasma deposited onto acoustically excited piezoelectric substrates. Using magnetron sputtering as plasma technique and TiO2 as case example, it is demonstrated that the deposited films depict a sub-millimetre 2D pattern that, characterized by large lateral differences in nanostructure, density (up to 50%), thickness, and physical properties between porous and dense zones, reproduces the wave features distribution of the generated acoustic waves (AW). Simulation modelling of the AW propagation and deposition experiments carried out without plasma and under alternative experimental conditions reveal that patterning is not driven by the collision of ad-species with mechanically excited lattice atoms of the substrate, but emerges from their interaction with plasma sheath ions locally accelerated by the AW-induced electrical polarization field developed at the substrate surface and growing film. The possibilities of the AW activation as a general approach for the tailored control of nanostructure, pattern size, and properties of thin films are demonstrated through the systematic variation of deposition conditions and the adjustment of AW operating parameters.


Febrero, 2021 | DOI: 10.1039/D0MH01540G

Impact of Tb4+ and morphology on the thermal evolution of Tb-doped TiO2 nanostructured hollow spheres and nanoparticles


Colomer, MT; Rodriguez, E; Moran-Pedroso, M; Vattier, F; de Andres, A
Journal of Alloys and Compounds, 853 (2021) 156973
Materiales Ópticos Multifuncionales

ABSTRACT

Tb-doped TiO2 hollow spheres (HSs) in the range 0.0-2.0 at.% have been synthesized by the first time to the best of our knowledge. The HSs are compared with nanoparticles (NPs) to evaluate the impact of morphology on their physicochemical and photoluminescence (PL) behavior upon increasing calcination temperature. After calcination at 550 degrees C, the particles are anatase with a primary average size of 10.0 +/- 0.2 nm for the NPs and 12.0 +/- 0.2 nm for those that form the micron sized hollow spheres of 1.8 +/- 0.2 mu m diameter and ca. 64 nm shell thickness. The temperature of the anataseerutile transition is found to be strongly dependent on the presence of Tb as well as on morphology. Contrarily to the usual stabilization of anatase when doping with trivalent rare-earth ions, the transition temperature is reduced when doping with Tb. The rutile phase is further favored for the HSs compared to the NPs probably related to the low density of the HSs and/or a more efficient packing density and/or a bigger crystal size of the nanoparticles that form those spheres with respect to the packing and the size of the NPs and/or the crystal size of the nanoparticles of the HSs with respect to the size of the NPs. Only a slight unit-cell volume increase for the anatase structure is observed upon Tb doping, in both the NPs and in the HSs, contrary to the expected increment due to the larger ionic radius of Tb3+ compared to Ti4+. In addition, the intensity of the characteristic f-f Tb3+ emission bands is extremely weak both in the anatase and rutile phases. The transition is accompanied with the emergence of an infrared emission band centered at 810 nm related to the formation of defects during the structural transformation providing deep levels in the gap that partly quench the f-f emissions in the rutile phase. The results are consistent with the presence of Tb in both +3 and +4 valence states. XPS measurements confirmed the presence of Tb3+ as well as of Tb4+ in both HSs and NPs. The large fraction of Tb4+ present in the samples originates the weak f-f emission intensity, an only slight increase of the cell parameters and the destabilization of the anatase phase. 


Febrero, 2021 | DOI: 10.1016/j.jallcom.2020.156973

Insights into the role of the layer architecture of Cr-Ti-N based coatings in long-term high temperature oxidation experiments in steam atmosphere


Mato, S; Sanchez-Lopez, JC; Barriga, J; Perez, FJ; Alcala, G
Ceramics International, 47 (2021) 4257-4266
Tribología y Protección de Superficies

ABSTRACT

Knowledge on hard coatings has been applied in the energy field extending their use as protecting coatings of steam power generation plants components. The role of the layer architecture of Cr-Ti-N based coatings deposited by reactive cathodic arc evaporation on P92 steel substrates was studied with the focus on their oxidation resistance at 650 degrees C in 100% steam atmosphere up to 2000 h. Characterization of the coatings was performed by gravimetry, scanning electron microscopy, electron probe microanalysis, glow discharge optical emission spectroscopy, X-ray diffraction, thermodynamic simulations using the CALPHAD method, Rockwell C indentation and nanoindentation. The layered arrangement improves the oxidation resistance of TiN under the working conditions of steam power plants, as well as the mechanical properties of CrN. The produced architectures performance under the described working conditions boosts the understanding of the processes taking place at high temperature, making possible the design of optimal coatings combining the best behavior of both nitrides for each specific application, reaching a corrosion protection at high temperature in water vapor comparable to that of CrN and a hardness and Young's modulus as high as those of TiN.


Febrero, 2021 | DOI: 10.1016/j.ceramint.2020.10.003

Active sites and optimization of mixed copper-cobalt oxide anodes for anion exchange membrane water electrolysis


Lopez-Fernandez, E; Gil-Rostra, J; Escudero, C; Villar-Garcia, IJ; Yubero, F; Consuegra, AD; Gonzalez-Elipe, AR
Journal of Power Sources, 485 (2021) 229217
Nanotecnología en Superficies y Plasma

ABSTRACT

The optimization of the catalysts incorporated to the electrodes for anion exchange membrane water electmlysers is a key issue to maximize their performance through the improvement of the oxygen evolution reaction (OER) yield. In this work, we show that the modification of the microstructure and the chemical properties of a mixed copper-cobalt oxide anode may contribute to increase the activity of this reaction. For this purpose, the OER has been systematically studied, either in a half cell or in a membrane electrode assembly configuration, as a function of the load and agglomeration degree of the catalysts used as electrodes, as prepared on a carbon paper support by magnetron sputtering deposition in an oblique angle configuration. Chemical analysis by X-ray absorption spectroscopy and electrochemical analysis by cyclic voltammetry and impedance spectroscopy have shown that cobalt-copper mixed oxide catalysts with a 1.8 Co/Cu atomic ratio and about one micron equivalent thickness maximizes the cell performance. The chemical, structural and microstructural factors controlling the final behaviour of these anodes and accounting for this maximization of the reaction yield are discussed on the basis of these characterization results and as a function of preparation variables of the electrodes and operating conditions of the cell.


Febrero, 2021 | DOI: 10.1016/j.jpowsour.2020.229217

Disentangling Electron–Phonon Coupling and Thermal Expansion Effects in the Band Gap Renormalization of Perovskite Nanocrystals


Rubino, A; Francisco-Lóprez, A.; Baker, A.J., Petrozza, A.; Calvo, M.E.; Goñi, A.R.; Míguez, H.
Journal of Physical Chemistry Letters, 12 (2021) 569-575
Materiales Ópticos Multifuncionales

ABSTRACT

The complex electron–phonon interaction occurring in bulk lead halide perovskites gives rise to anomalous temperature dependences, like the widening of the electronic band gap as temperature increases. However, possible confinement effects on the electron–phonon coupling in the nanocrystalline version of these materials remain unexplored. Herein, we study the temperature (ranging from 80 K to ambient) and hydrostatic pressure (from atmospheric to 0.6 GPa) dependence of the photoluminescence of ligand-free methylammonium lead triiodide nanocrystals with controlled sizes embedded in a porous silica matrix. This analysis allowed us to disentangle the effects of thermal expansion and electron–phonon interaction. As the crystallite size decreases, the electron–phonon contribution to the gap renormalization gains in importance. We provide a plausible explanation for this observation in terms of quantum confinement effects, showing that neither thermal expansion nor electron–phonon coupling effects may be disregarded when analyzing the temperature dependence of the optoelectronic properties of perovskite lead halide nanocrystals.


Enero, 2021 | DOI: 10.1021/acs.jpclett.0c03042

Critical Influence of the Processing Route on the Mechanical Properties of Zirconia Composites with Graphene Nanoplatelets


Gallardo-Lopez, A; Munoz-Ferreiro, C; Lopez-Pernia, C; Jimenez-Pique, E; Gutierrez-Mora, F; Morales-Rodriguez, A; Poyato, R
Materials, 14 (2021) 108
Reactividad de Sólidos

ABSTRACT

Graphene-based nanostructures, used as potential reinforcement in ceramic composites, have a great tendency to agglomerate. This requires the use of homogenization techniques during the powder processing, posing the need to evaluate how these techniques affect the microstructure and the mechanical properties of the resulting composites. The influence of the processing route on the properties of 3YTZP (3 mol % yttria tetragonal zirconia polycrystals) ceramic composites with 10 vol % cost-effective GNP (graphene nanoplatelets) has been addressed. Four different powder processing routines combining ultrasonic powder agitation (UA) and planetary ball milling (PBM) in wet and dry media have been used and all the composites were densified by spark plasma sintering (SPS). The mechanical properties at room temperature in the macroscale have been assessed by Vickers indentations, four-point bending tests and the impulse-echo technique, while instrumented indentation was used to measure the hardness and Young’s modulus at the nanoscale. The application of dry-PBM enhances greatly the mechanical and electrical isotropy of the composites, slightly increases the hardness and lowers the elastic modulus, independently of the application of UA. The combination of UA and dry-PBM enhances the flexure strength by 50%, which is desirable for structural applications.


Enero, 2021 | DOI: 10.3390/ma14010108

Sol-gel synthesis of ZnWO4-(ZnO) composite materials. Characterization and photocatalytic properties


Jaramillo-Páez, C., Navío, J.A., Puga, F., Hidalgo, M.C.
Journal of Photochemistry & Photobiology, A: Chemistry, 404 (2021) 112962
Fotocatálisis Heterogénea: Aplicaciones

ABSTRACT

ZnWO4 based powder photocatalyst have been successfully prepared by calcining a co-precipitated precursor (ZnWO) obtained from aqueous Zn2+ and WO4 2− solutions at pH = 7, without surfactants addition. The as-formed sample was characterized by XRD, N2-absorption, SEM, TEM, DRS and XPS. Both techniques, XRD and XPS results showed that prepared sample corresponds to a crystalline, Zn-enriched composition, ZnWO4 indicating the formation of a ZnWO4-(ZnO) composite, whit ca. 10 wt.-% of ZnO confirmed by XRF analysis. Photocatalytic activities towards degradation of Rhodamine B (RhB), Methyl Orange (MO) and Phenol, under UV-illumination, was investigated not only by monitoring the percentages of conversion of substrates, but also by estimating the corresponding percentages of mineralization that accompany the photocatalytic process. Comparative substrateconversion rates estimated per surface area unit of catalyst, showed that the activity for ZnWO4-(ZnO) composite is similar to that for TiO2(P25), at least for MO and RhB, and even higher that for TiO2(P25) in respect to phenol conversion. By adding TEA to the synthesis procedure, a composite named as ZnWO4-ZnO-(pH = 10)-600 is generated, which has a higher proportion of ZnO (ca. 39 %) and superior specific surface area than the so-called ZnWO4-(ZnO) sample. Furthermore, the photocatalytic degradation of MO using the former material indicates that it is superior to ZnWO4-(ZnO) and even that TiO2(P25) itself under the same operational conditions. 


Enero, 2021 | DOI: 10.1016/j.jphotochem.2020.112962

Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties


Uribe-Lopez, MC; Hidalgo-Lopez, MC; Lopez-Gonzalez, R; Frias-Marquez, DM; Nunez-Nogueira, G; Hernandez-Castillo, D; Alvarez-Lemus, MA
Journal of Photochemistry & Photobiology, A: Chemistry, 404 (2021) 112866
Fotocatálisis Heterogénea: Aplicaciones

ABSTRACT

In the present study, we report on the effect of the synthesis method in the photoactivity of ZnO-NPs. The nanoparticles were prepared by precipitation and sol-gel procedures using zinc nitrate and zinc (II) acetylacetonate as ZnO precursors, respectively. The obtained samples were named as ZnO-PP (precipitation method) and ZnO-SG (sol-gel method). The powders were calcined at 500 degrees C and further characterized by Fourier Transform Infrared spectroscopy, X-ray Powder Diffraction, N-2 adsorption, thermal analysis, Diffuse Reflectance UV-Vis spectroscopy, and Electron Microscopy. Both methods of synthesis lead to formation of pure ZnO with hexagonal-wurtzite crystalline structures with average crystallite sizes similar to 30 nm. The specific surface area was affected by the synthesis method, since SBET values were 5 m(2)/g and 13 m(2)/g for sol-gel and precipitation method, respectively. The electron microscopy revealed significant changes in morphology for the obtained nanoparticles, as sol-gel directed the hexagonal rod-like geometries (similar to 50 nm in diameter) while quasi-spherical nanoparticles (similar to 100 nm in diameter) were formed using precipitation method. Photocatalytic activity was estimated by degrading phenol (50 ppm) as probe molecule under UVA irradiation (lambda = 356 nm), the results demonstrated that ZnO-PP reached 100 % of degradation after 120 min and 90 % of the pollutant was mineralized, whereas for ZnO-SG the results were 80 % and 48 % respectively. Fluorescence test using terephthalic acid (TA) demonstrated higher formation of OH center dot radicals for ZnO synthesized by precipitation method, which could explain the higher photodegradation and mineralization observed. These results support that even slight differences in physical and chemical properties of ZnO, have a significant impact on the photocatalytic performance of such nanoparticles.


Enero, 2021 | DOI: 10.1016/j.jphotochem.2020.112866

Dysprosium and Holmium Vanadate Nanoprobes as High-Performance Contrast Agents for High-Field Magnetic Resonance and Computed Tomography Imaging


Gomez-Gonzalez, E; Nunez, NO; Caro, C; Garcia-Martin, ML; Fernandez-Afonso, Y; de la Fuente, JM; Balcerzyk, M; Ocana, M
Inorganic Chemistry, 60 (2021) 152-160
Materiales Coloidales

ABSTRACT

We describe a wet chemical method for the synthesis of uniform and well-dispersed dysprosium vanadate (DyVO4) and holmium vanadate (HoVO4) nanoparticles with an almost spherical shape and a mean size of ∼60 nm and their functionalization with poly(acrylic acid). The transverse magnetic relaxivity of both systems at 9.4 T is analyzed on the basis of magnetic susceptibility and magnetization measurements in order to evaluate their potential for application as high-field MRI contrast agents. In addition, the X-ray attenuation properties of these systems are also studied to determine their capabilities as computed tomography contrast agent. Finally, the colloidal stability under physiological pH conditions and the cytotoxicity of the functionalized NPs are also addressed to assess their suitability for bioimaging applications.


Enero, 2021 | DOI: 10.1021/acs.inorgchem.0c02601



2020


Thin film electroluminescent device based on magnetron sputtered Tb doped ZnGa2O4 layers


Gil-Rostra, J; Valencia, FY; Gonzalez-Elipe, AR
Journal of Luminescence, 228 (2020) 117617
Nanotecnología en Superficies y Plasma

ABSTRACT

Photoluminescent (PL) layers and electroluminescent (EL) systems prepared by different methods have been systematically studied for the fabrication of flat panel displays, monitoring screens, and lighting systems. In this work we report about a new procedure of preparing Tb doped ZnGa2O4 green luminescent thin films at low temperature that consists of the simultaneous reactive magnetron sputtering (R-MS) deposition of a Zn-Ga mixed oxide acting as a matrix and the plasma decomposition (PD) of evaporated terbium acetylacetonate. The resulting films were transparent and presented a high PL efficiency making them good candidates for EL applications. Layers of this phosphor film with thickness in the order of hundreds nanometers were sandwiched between two dielectric layers of Y2O3 and AlSiNxOy that were also prepared by R-MS. The response of the resulting EL device was characterized as a function of the applied voltage and the type of AC excitation signal. The high luminance and long-term stability of these thin film electroluminescent devices (TFELDs) proves the reliability and efficiency of this kind of transparent R-MS multilayer system (with a total thickness in order of 650 nm) for display and lighting applications.


Diciembre, 2020 | DOI: 10.1016/j.jlumin.2020.117617

Efficient third harmonic generation from FAPbBr(3) perovskite nanocrystals


Rubino, A; Huq, T; Dranczewski, J; Lozano, G; Calvo, ME; Vezzoli, S; Miguez, H; Sapienza, R
Journal of Materials Chemistry C, 8 (2020) 15990-15995
Materiales Ópticos Multifuncionales

ABSTRACT

The development of versatile nanostructured materials with enhanced nonlinear optical properties is relevant for integrated and energy efficient photonics. In this work, we report third harmonic generation from organic lead halide perovskite nanocrystals, and more specifically from formamidinium lead bromide nanocrystals, ncFAPbBr(3), dispersed in an optically transparent silica film. Efficient third order conversion is attained for excitation in a wide spectral range in the near infrared (1425 nm to 1650 nm). The maximum absolute value of the modulus of the third order nonlinear susceptibility of ncFAPbBr(3), chi((3)NC), is derived from modelling both the linear and nonlinear behaviour of the film and is found to be chi((3)NC) = 1.46 x 10(-19) m(2) V-2 (or 1.04 x 10(-11) esu) at 1560 nm excitation wavelength, which is of the same order as the highest previously reported for purely inorganic lead halide perovskite nanocrystals (3.78 x 10(-11) esu for ncCsPbBr(3)). Comparison with the experimentally determined optical constants demonstrates that maximum nonlinear conversion is attained at the excitonic resonance of the perovskite nanocrystals where the electron density of states is largest. The ease of synthesis, the robustness and the stability provided by the matrix make this material platform attractive for integrated nonlinear devices.


Diciembre, 2020 | DOI: 10.1039/d0tc04790b

Páginas

icms