Menú secundario

Artículos SCI

Ordenado por: fecha  | factor de impacto    



2022


Reduction of N2O with hydrosilanes catalysed by RuSNS nanoparticles


Molinillo, P; Lacroix, B; Vattier, F; Rendon, N; Suarez, A; Lara, P
Chemical Communications

ABSTRACT ▼

A series of RuSNS nanoparticles, prepared by decomposition of Ru(COD)(COT) with H-2 in the presence of an SNS ligand, have been found to catalyse the reduction of the greenhouse gas N2O to N-2 employing different hydrosilanes.


Junio, 2022 | DOI: 10.1039/d2cc01470j

Neodymium doped lanthanide fluoride nanoparticles as contrast agents for luminescent bioimaging and X-ray computed tomography


Gonzalez-Mancebo, D; Becerro, AI; Calderon-Olvera, RM; Cantelar, E; Corral, A; Balcerzyk, M; De la Fuente, JM; Ocaña, M
Boletin de la Sociedad Española de Ceramica y Vidrio, 61 (2022) 540-549
Materiales Coloidales

ABSTRACT ▼

The synthesis of uniform neodymium-doped lanthanum trifluoride nanoparticles with lenticular shape and a mean diameter around 45 nm by using a homogeneous precipitation method is reported. The luminescent properties of the synthesized samples in terms of their emission spectra and emission lifetime are analyzed as a function of the Nd content to find the optimum phosphor and its suitability for luminescent imaging in the second biological window. The X-ray attenuation properties of the optimum phosphor are evaluated to investigate their additional ability as contrast agent for X-ray computed tomography. Finally, the colloidal stability of the obtained nanoparticles in physiological medium and their cytotoxicity are also analyzed to assess their aptness for in vivo bioimaging applications. 


Mayo, 2022 | DOI: 10.1016/j.bsecv.2021.07.004

Effect of sintering under CO+N-2/H-2 and CO2+air atmospheres on the physicochemical features of a commercial nano-YSZ


Colomer, M.T.; Simenas, M.; Banys, J.; Vattier, F.; Gagor, A.; Maczka, M.
Journal of Alloys and Compounds, 904 (2022) 163976

ABSTRACT ▼

Given the need to process anodes and composites based on nano-YSZ in reducing or in air containing additional CO2 atmospheres for the fabrication of solid oxide fuel cells (SOFCs), and solid oxide electrolysis cells (SOECs), we have studied the effect of the exposure to CO+N2/H2 or CO2+air mixtures during sintering of YSZ green pellets, prepared from commercial nanopowders, on their structure, microstructure, chemical composition and their electrical properties. The reduced sample shows Raman bands at 1298 and 1605 cm−1 that are assigned to the D and G bands of carbon, respectively. The bands intensity ratio ID/IG indicates a larger content of disordered carbon. X-ray photoelectron spectroscopy (XPS) shows that C is present in the reduced samples as reduced carbon. However, the samples sintered in CO2+air present C as carbonate-type. Impedance spectroscopy reveals that the highest total conductivity is for the reduced samples in the whole range of studied temperatures. In addition, sintering in CO2+air causes a detrimental effect on the grain boundary conductivity and therefore, on the total electrical conductivity of YSZ. It can be due to the presence of impurities such as carbonates and oxidised or even, polymerised carbonaceous species located at those areas.


Mayo, 2022 | DOI: 10.1016/j.jallcom.2022.163976

Versatile Ni-Ru catalysts for gas phase CO2 conversion: Bringing closer dry reforming, reverse water gas shift and methanation to enable end-products flexibility


Merkouri, LP; le Sache, E; Pastor-Perez, L; Duyar, MS; Reina, TR
Fuel, 315 (2022) 123097
Química de Superficies y Catálisis

ABSTRACT ▼

Advanced catalytic materials able to catalyse more than one reaction efficiently are needed within the CO2 utilisation schemes to benefit from end-products flexibility. In this study, the combination of Ni and Ru (15 and 1 wt%, respectively) was tested in three reactions, i.e. dry reforming of methane (DRM), reverse water-gas shift (RWGS) and CO2 methanation. A stability experiment with one cycle of CO2 methanation-RWGS-DRM was carried out. Outstanding stability was revealed for the CO2 hydrogenation reactions and as regards the DRM, coke formation started after 10 h on stream. Overall, this research showcases that a multicomponent Ni-Ru/CeO2 -Al2O3 catalyst is an unprecedent versatile system for gas phase CO2 recycling. Beyond its excellent performance, our switchable catalyst allows a fine control of end-products selectivity.


Mayo, 2022 | DOI: 10.1016/j.fuel.2021.123097

High temperature mechanical properties of polycrystalline Y2SiO5


Cabezas-Rodríguez, R; Ciria, D; Martínez-Fernandez, J; Dezanneau, G; Karolak, F; Ramirez-Rico, J
Boletin de la Sociedad Española de Ceramica y Vidrio, 61 (2022) S60-S68-228
Materiales de Diseño para la Energía y Medioambiente

ABSTRACT ▼

The high temperature mechanical properties of polycrystalline Y2SiO5 were studied in compression at temperatures in the range of 1200-1400 degrees C, both in constant strain rate and constant stress experiments. To examine the effect of grain size on the plastic deformation, two routes were used for the synthesis and sintering of Y2SiO5: one of solid state reaction followed by conventional sintering in air, and one of sol-gel synthesis followed by spark-plasma sintering, resulting in starting grain sizes of 2.2 and 0.9 mu m, respectively. Ceramics obtained by these routes exhibited different high-temperature compression behavior: while the conventionally processed ceramic exhibited grain growth during mechanical testing and a stress exponent close to one, compatible with diffusional creep, the spark-plasma sintered ceramic showed no grain growth but significant cavitation, a stress exponent close to two and partially superplastic behavior. These results have implications for the design and lifetime assessment of rare earth silicate-based environmental barrier coatings. 


Mayo, 2022 | DOI: 10.1016/j.bsecv.2021.09.008

Role of Surface Topography in the Superhydrophobic Effect-Experimental and Numerical Studies


Ibrahim, SH; Wejrzanowski, T; Przybyszewski, B; Kozera, R; Garcia-Casas, X; Barranco, A
Materials, 15 (2022) 3112
Nanotecnología en Superficies y Plasma

ABSTRACT ▼

Within these studies, the effect of surface topography for hydrophobic coatings was studied both numerically and experimentally. Chemically modified polyurethane coating was patterned by application of a laser beam. A set of patterns with variously distant linear peaks and grooves was obtained. The cross section of the pattern showed that the edges of the peaks and grooves were not sharp, instead forming a rounded, rectangle-like shape. For such surfaces, experimental studies were performed, and in particular the static contact angle (SCA), contact angle hysteresis (CAH), and roll-off angle (ROA) were measured. Profilometry was used to create a numerical representation of the surface. Finite volume method was then applied to simulate the behavior of the water droplets. The model developed herewith enabled us to reproduce the experimental results with good accuracy. Based on the verified model, the calculation was extended to study the behavior of the water droplet on the simulated patterns, both spiked and rectangular. These two cases, despite a similar SCA of the water droplet, have shown extremely different ROA. Thus, more detailed studies were dedicated to other geometrical features of such topography, such as the size and distance of the surface elements. Based on the results obtained herewith, the future design of superhydrophobic and/or icephobic topography is discussed.


Mayo, 2022 | DOI: 10.3390/ma15093112

Analysis of the effect of cationic ratio Bi3+/Fe3+ on the magnetic and multiferroic properties of BiFeO3 nanoparticles synthesized using a sonochemical-assisted method


Palomino-Resendiz, RL; Bolarin-Miro, AM; Pedro-Garcia, F; Sanchez-De Jesus, F; Espinos-Manzorro, JP; Cortes-Escobes-Escobedo, CA
Ceramics International, 48 (2022) 14746-14753
Nanotecnología en Superficies y Plasma

ABSTRACT ▼

This study examined the effects of the cationic ratio of Bi3+/Fe3+ via X-ray photoelectron spectroscopy (XPS) on the magnetic and multiferroic properties of BiFeO3 nanoparticles synthesized using a sonochemical-assisted method. X-ray diffraction revealed the successful synthesis of single-phase BiFeO3 powder after annealing the sonicated material at 723 K. The powder was composed of agglomerates of rounded particles with a mean particle size of 35 nm. XPS was performed to determine the Bi3+/Fe3+ ratio as a function of the heat treatment process and its relationship with secondary phases, which can modulate the magnetic properties of the nano powders. The cationic ratio obtained by XPS confirmed that the powders obtained at 623 and 923 K have excess Bi3+ and Fe3+, respectively, which induces the formation of Bi24Fe2O39 and Bi2Fe4O9 as the majority phases. Powder annealing at 723 K revealed a ferromagnetic order with specific magnetization of 1.8 Am-2/kg. This ferromagnetic behavior was preserved after applying spark plasma sintering (SPS) at 923 K. By contrast, conventional sintering at 1023 K promotes antiferromagnetic order. In addition, the dielectric properties of the ceramic material of the sintered powders showed a behavior related to a typical ferroelectric material.


Mayo, 2022 | DOI: 10.1016/j.ceramint.2022.02.011

The SrCO3/SrO system for thermochemical energy storage at ultra-high temperature


Amghar, N; Ortiz, C; Perejon, A; Valverde, JM; Maqueda, LP; Jimenez, PES
Solar Energy Materials and Solar Cells, 238 (2022) 111632
Reactividad de Sólidos

ABSTRACT ▼

Thermochemical energy storage (TCES) has attracted interest in the last years due to the possibility of attaining high energy densities, seasonal storage capacity and greater efficiencies than currently commercial thermal energy storage systems using molten salts. This work analyses the potential of an ultra-high temperature TCES system based on the SrCO3/SrO system. The process relies upon the reversible decomposition of SrCO3 into SrO and CO2. As proposed in previous works for the integration of the Ca-Looping process to store energy in CSP plants, both the calcination (endothermic) and carbonation (exothermic) reactions are carried out in a closed CO2 loop. At these conditions, the required temperature to attain full calcination in short residence times is around 1400 degrees C whereas carbonation takes place at about 1200 degrees C. Using this process, the energy density potentially achievable by the storage material is very high (around 2000 MJ/m(3)) while the ultra-high carbonation temperature would improve thermoelectric efficiency. The enhancement of the multicycle performance of the SrCO3/SrO system using refractory additives is also explored. Even though current commercial CSP plants with tower technology cannot yet operate at these ultra-high temperatures, recent advances in the development of high-temperature solar receivers could allow operation at 1400 degrees C in the medium term. Finally, a conceptual model of the integration of the SrCO3/SrO system in a CSP plant supports higher overall efficiency and energy density, but lower solar-to-electric efficiency due to thermal losses.


Mayo, 2022 | DOI: 10.1016/j.solmat.2022.111632

Characterization of Re-Mo/ZSM-5 catalysts: How Re improves the performance of Mo in the methane dehydroaromatization reaction


Lopez-Martin, A; Sini, MF; Cutrufello, MG; Caballero, A; Colon, G
Applied Catalysis B-Environmental, 304 (2022) 120960
Materiales y Procesos Catalíticos de Interés Ambiental y Energético

ABSTRACT ▼

In this study, the promoting effect of rhenium addition as a co-dopant on Mo/ZSM-5 catalysts system has been analysed. Hence, bimetallic (Re-Mo/ZSM-5) catalysts have been synthesized using a sequential impregnation methodology. The catalytic performance for direct aromatization of methane reaction has been determined and correlated with their physical and chemical state combining multiple characterization techniques. An important synergy between Mo and Re, affected by the sequential impregnation, has been observed. Thus, Re1-Mo4/ZSM-5 in which Re has been incorporated first shows notably higher aromatic yields and stability against deactivation. Characterization results suggest that catalytic enhancement is due to the important effect of Re presence in close interaction with Mo. Improved evolution of ethane through C-C coupling would be correlated to this catalytic performance. As we discuss, Mo nature and location in the bimetallic systems are strongly conditioned by Re and the impregnation sequence and favours such intermediate step.


Mayo, 2022 | DOI: 10.1016/j.apcatb.2021.120960

Synthesis and characterization of alkali-activated materials containing biomass fly ash and metakaolin: effect of the soluble salt content of the residue


Jurado-Contreras, S; Bonet-Martínez, E; Sánchez-Soto, PJ; Gencel, O; Eliche-Quesada, D
Archives of Civil and Mechanical Engineering, 22 (2022) 121
Materiales Avanzados

ABSTRACT ▼

The present study investigates the production and characterization of alkali-activated bricks prepared with mixing metakaolin (MK) and biomass fly ash from the combustion of a mix of pine pruning, forest residues and energy crops (BFA). To use this low cost and high availability waste, different specimens were prepared by mixing MK with different proportions of BFA (25, 50 and 75 wt%). Specimens containing only metakaolin and biomass fly ash were produced for the purpose of comparison. Effects of the alkali content of biomass fly ash, after a washing pretreatment (WBFA), as well as the concentration of NaOH solution on the physical, mechanical and microstructural properties of the alkali-activated bricks were studied. It was observed that up to 50 wt% addition of the residue increases compressive strength of alkali-activated bricks. Alkalinity and soluble salts in fly ash have a positive effect, leading materials with the improved mechanical properties. Concentration of NaOH 8 M or higher is required to obtain optimum mechanical properties. The compressive strength increases from 23.0 MPa for the control bricks to 44.0 and 37.2 MPa with the addition of 50 wt% BFA and WBFA, respectively, indicating an increase of more than 60%. Therefore, the use of biomass fly ash provides additional alkali (K) sources that could improve the dissolution of MK resulting in high polycondensation. However, to obtain optimum mechanical properties, the amount of BFA cannot be above 50 wt%.


Mayo, 2022 | DOI: 10.1007/s43452-022-00444-2

Composition and technological features of ceramics manufactured by Benito de Valladares in the seventeenth century from the Alcazar Palace in Seville, Spain


Pérez-Rodríguez, J.L.; Robador, M.D.; Duran, A.
European Physical Journal Plus, 137 (2022) 469

ABSTRACT ▼

The walls of the Alcazar Palace in Seville have been covered with ceramic tiles of different styles that were manufactured with different techniques. Several studies have been carried out on these ceramics, but no interest has been paid to the tiles manufactured by the workshop of the Valladares family, one of the most productive ceramic workshops in Triana (Seville). In this work, tiles that were made in the Valladares workshop are studied for the first time. The tiles from the Cenador del Leon built in 1645-1646 were chosen. The experimental studies suggest that the ceramic body was manufactured with silico-calcareous clay. This raw material was heated to a temperature of ca. 900 degrees C. A nondestructive and on-site analytical procedure was applied first. Microsamples were also taken and studied through microanalytical techniques. The maiolica style was used by Benito de Valladares for tile manufacture. The glaze phases were constituted by two layers. The pigments and doping elements used to obtain different colors were characterized. Valladares' work is considered as a continuation of Augusta's work; therefore, a comparison between both ceramists has been realized to better understand the ceramics production in southern Spain during the sixteenth to seventeenth centuries.


Abril, 2022 | DOI: 10.1140/epjp/s13360-022-02669-9

Thin film nanostructuring at oblique angles by substrate patterning


Muñoz-Pina, S; Alcaide, AM; Limones-Ahijon, B; Oliva-Ramirez, M; Rico, V; Alcala, G; Gonzalez, MU; García-Martín, JM; Alvarez, R; Wang, D; Schaaf, P; Gonzalez-Elipe, AR; Palmero, A
Surface & Coatings Technology, 436 (2022) 128293
Nanotecnología en Superficies y Plasma

ABSTRACT ▼

It is demonstrated that, besides classical nanocolumnar arrays, the oblique angle geometry induces the growth of singular structures in the nanoscale when using wisely designed patterned substrates. Well-ordered array of crosses, cylindrical nanorods or hole structures arranged in square or hexagonal regular geometries are reported as examples, among others. The fundamental framework connecting substrate topography and film growth at oblique angles is presented, allowing the use of substrate patterning as a feasible thin film nanostructuring technique. A systematic analysis of the growth of TiO2 thin films on 4 different lithographic patterned substrates in 4 different scale lengths is also presented. A first conclusion is the existence of a height-based selective growth in the initial stages of the deposition, by which the film preferentially develops on top of the tallest substrate features. This behavior is maintained until the film reaches a critical thickness, the so-called Oblivion Thickness, above which the film topography becomes gradually independent of the substrate features. A general formula relating the spatial features of the pattern, the coarsening exponent and the Oblivion Thickness has been deduced.


Abril, 2022 | DOI: 10.1016/j.surfcoat.2022.128293

Ageing-resistant zirconia/graphene-based nanostructures composites for use as biomaterials


Morales-Rodriguez, A; Gonzalez-Orellana, C; Perez-Garcia, AA; Lopez-Pernia, C; Munoz-Ferreiro, C; Poyato, R; Gallardo-Lopez, A
Journal of the European Ceramic Society, 42 (2022) 1784-1795
Reactividad de Sólidos

ABSTRACT ▼

This work explores the incorporation of graphene-based two-dimensional nanostructures as moisture barriers to delay hydrothermal ageing of yttria-stabilized zirconia and strengthen its use in biomedical applications. Two sets of highly dense zirconia composites incorporating multilayered graphene with very different lateral dimensions, few layer graphene and exfoliated graphene nanoplatelets, were prepared. The effect of the addition of graphene nanostructures on zirconia ageing was investigated by conducting accelerated hydrothermal degradation experiments in an autoclave. An improved resistance to low-temperature degradation and a high tolerance to damage were achieved in the composites compared to those of monolithic zirconia. The incorporation of 1 vol% multilayered graphene was very effective in restricting the hydrothermal degradation. In particular, the composite incorporating exfoliated graphene nanosheets exhibited outstanding resistance to ageing because of their fine dispersion throughout the matrix, which effectively seemed to restrict grain growth and slow the propagation of the transformation front to the ceramic bulk.


Abril, 2022 | DOI: 10.1016/j.jeurceramsoc.2021.11.060

H-2 Photoproduction Efficiency: Implications of the Reaction Mechanism as a Function of the Methanol/Water Mixture


Barba-Nieto, I; Colon, G; Kubacka, A; Fernandez-Garcia, M
Catalysts, 12 (2022) 402
Materiales y Procesos Catalíticos de Interés Ambiental y Energético

ABSTRACT ▼

The influence of the reaction pathway of the sacrificial molecule oxidation to generate hydrogen is here investigated for lean and rich methanol reaction mixtures. Pt-TiO2 powders promoted or not with tin sulfide were used as catalysts. With the help of in situ infrared experiments under reaction conditions, methanol evolution was shown to take place by hole-related oxidation steps, with alkoxy and carbon-centered species as key radical species. The study analyzed quantitatively the fate and chemical use of the photons absorbed by the solids with the help of the quantum efficiency and the useful fraction of photons observables. Within this framework, the role of the sulfide component to promote photoactivity is interpreted, braiding chemical and photonic information.


Abril, 2022 | DOI: 10.3390/catal12040402

QUEELS: Software to calculate the energy loss processes in TEELS, REELS, XPS and AES including effects of the core hole


Tougaard, S; Pauly, N; Yubero, F
Surface and Interface Analysis
Nanotecnología en Superficies y Plasma

ABSTRACT ▼

We present the user-friendly and freely available software package QUEELS (QUantitative analysis of Electron Energy Losses at Surfaces) that allows to calculate effective inelastic scattering cross sections within the dielectric response description, for swift electrons travelling nearby surfaces in several environments. We briefly describe the underlying theoretical models and illustrate its use to evaluate the distribution of energy losses taking place in electron spectroscopies like transmission electron energy loss spectroscopy (TEELS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and reflection electron energy loss spectroscopy (REELS), which are widely used for material analysis. This includes the intrinsic excitations due to the core hole in XPS and AES.


Abril, 2022 | DOI: 10.1002/sia.7095

Highly uniform Y3Al2Ga3O12-based nanophosphors for persistent luminescence bioimaging in the visible and NIR regions


Arroyo, E; Herrero, BT; De la Fuente, JM; Ocaña, M; Becerro, AI
Inorganic Chemistry Frontiers
Reactividad de Sólidos

ABSTRACT ▼

In the last few years, persistent phosphors with a garnet crystal structure have attracted a great deal of interest for a plethora of applications ranging from bioimaging to anti-counterfeiting technologies. However, the development of synthesis methods to fabricate uniform garnet-based micro and nanoparticles, that are needed for such applications, is not mature at all. This study reports the synthesis of highly uniform yttrium aluminum gallium garnet nanospheres. The method is based on homogeneous precipitation in a polyol medium followed by silica coating and calcination. The nanoparticles resulting after silica removal were also uniform and were easily functionalized with polyacrylic acid. The colloidal stability of the latter in physiological media and their biocompatibility were analyzed. The luminescence of the particles, doped with Ce3+, Cr3+, and Nd3+, was studied by recording emission and excitation spectra and persistent luminescence decay curves. Due to their uniform morphology, high colloidal stability, absence of toxicity, and persistent emission in the visible and near-infrared regions, the reported nanospheres show great potential as persistent luminescent bioimaging probes. In addition, the synthesis method paves the way for future use of this persistent material in other applications that require the phosphor to be in the form of highly uniform nanoparticles.


Abril, 2022 | DOI: 10.1039/d2qi00480a

Ionomer-Free Nickel-Iron bimetallic electrodes for efficient anion exchange membrane water electrolysis


Lopez-Fernandez, E; Gomez-Sacedon, C; Gil-Rostra, J; Espinos, JP; Gonzalez-Elipe, AR; Yubero, F; De Lucas-Consuegra, A
Chemical Engineering Journal, 433 (2022) 133774
Nanotecnología en Superficies y Plasma

ABSTRACT ▼

A bottleneck for the deployment of the Anion Exchange Membrane Water Electrolysis (AEMWE) is the manufacturing of efficient and long lasting anodes and cathodes for the cells. Highly performant bimetallic Ni/Fe catalyst films with various atomic ratios have been prepared by magnetron sputtering in an oblique angle configuration (MS-OAD) and used as anodes for AEMWE. Electrocatalytic experiments in a small three-electrode cell and a thorough analysis of the electrode properties with various physico-chemical characterization tech-niques have been used to select the nanostructured anode catalyst which, depicting an optimized Ni/Fe ratio, presents the maximum activity for the oxygen evolution reaction. These anode layers are then scale-up for their integration in an AEMWE cell where the influence of assembly conditions and the effect of adding an ionomer to the anodes have been studied. The obtained results have demonstrated the outstanding properties of the fabri-cated bimetallic films in terms of activity, stability, and operation under ionomer-free conditions. Current density values around 400 and 600 mA cm(-2) at 40??& nbsp;and 60 C (2.0 V), respectively, much higher than those obtained with pure Ni, were obtained with an optimized membrane electrode assembly. The high yield obtained with these electrodes gains further relevance when considering that the current yield per unit mass of the anodic active phase catalyst (i.e., 1086 mA mg(-1) at 2.0 V and 40??) is the highest among equivalent values reported in literature. The possibilities and prospects of the use of bimetallic catalyst films prepared by MS-OAD for AEMWE are discussed.


Abril, 2022 | DOI: 10.1016/j.cej.2021.133774

Enhanced up-conversion photoluminescence in fluoride-oxyfluoride nanophosphor films by embedding gold nanoparticles


Ngo, TT; Lozano, G; Miguez, H
Materials Advances (2022)
Materiales Ópticos Multifuncionales

ABSTRACT ▼

Owing to their unique non-linear optical character, lanthanide-based up-converting materials are potentially interesting for a wide variety of fields ranging from biomedicine to light harvesting. However, their poor luminescent efficiency challenges the development of technological applications. In this context, localized surface plasmon resonances (LSPRs) have been demonstrated as a valuable strategy to improve light conversion. Herein, we utilize LSPR induced by gold nanoparticles (NPs) to enhance up-conversion photoluminescence (UCPL) in transparent, i.e. scattering-free, films made of nanophosphors formed by fluoride–oxyfluoride host matrix that feature high thermal stability. Transparency allows excitation by an external source without extinction losses caused by unwanted diffuse reflection. We provide a simple method to embed gold NPs in films made of YF/YOF:Yb3+,Er3+ UC nanophosphors, via preparation of a viscous paste composed of both UC nanophosphors and colloidal gold NPs, reducing complexity in sample fabrication. The dimensions of gold NPs are such that their associated LSPR matches spectrally with the green emission band of the Er3+ doped nanophosphors. In order to demonstrate the benefits of plasmonic nanoparticles for UCPL in nanophosphor films, we provide a careful analysis of the structural properties of the composite thin films along with precise characterization of the impact of the gold NPs on the photophysical properties of UC nanophosphors.


Abril, 2022 | DOI: 10.1039/D2MA00068G

Z-scheme WO3/PANI heterojunctions with enhanced photocatalytic activity under visible light: A depth experimental and DFT studies


Y. Naciri; A.Hsini; A.Bouziani; K.Tanji; B.El Ibrahimi; M.N.Ghazza; B. Bakiz; A.Albourine; A.Benlhachemi; J.A. Navío
Chemosphere, 292 (2022) 133468
Fotocatálisis Heterogénea: Aplicaciones

ABSTRACT ▼

A WO3@PANI heterojunction photocatalyst with a various mass ratio of polyaniline to WO3 was obtained via the in situ oxidative deposition polymerization of aniline monomer in the presence of WO3 powder. The characterization of WO3@PANI composites was carried via X-ray diffraction (XRD), scanning electron microscopy (SEM-EDS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet–visible diffuse reflection spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy (PL). The photocatalytic efficiency of WO3@PANI photocatalysts was assessed by following the decomposition of the Rhodamine B (RhB) dye under visible light irradiation (λ >420 nm). The results evidenced the high efficiency of the WO3@PANI (0.5 wt %) nanocomposite in the photocatalytic degradation of RhB (90% within 120 min) under visible light irradiation 3.6 times compared to pure WO3. The synergistic effect between PANI and WO3 is the reason for the increased photogenerated carrier separation. The superior photocatalytic performance of the WO3@PANI catalyst was ascribed to the increased visible light in the visible range and the efficient charge carrier separation. Furthermore, the Density Functional Theory study (DFT) of WO3@PANI was performed at the molecular level, to find its internal nature for the tuning of photocatalytic efficiency. The DFT results indicated that the chemical bonds connected the solid-solid contact interfaces between WO3 and PANI. Finally, a plausible photocatalytic mechanism of WO3@PANI (0.5 wt %) performance under visible light illumination is suggested to guide additional photocatalytic activity development.


Abril, 2022 | DOI: 10.1016/j.chemosphere.2021.133468

Structural analysis of mixed alpha- and beta-amyrin samples


Gomez-Pulido, LDM; Gonzalez-Cano, RC; Benitez, JJ; Dominguez, E; Heredia, A
Royal Society Open Science, 9 (2022) 211787
Materiales de Diseño para la Energía y Medioambiente

ABSTRACT ▼

Little is known about the structure and molecular arrangement of alpha- and beta-amyrin, a class of triterpenoids found within the cuticle of higher plants. Blends of both amyrin isomers with different ratios have been studied taking into consideration a combined methodology of density functional theory (DFT) calculations with experimental data from scanning electron microscopy, differential scanning calorimetry and Raman vibrational spectroscopy. Results indicate that trigonal trimeric aggregations of isomer mixtures are more stable, especially in the 1 : 2 (alpha : beta) ratio. A combination of Raman spectroscopy and DFT calculations has allowed to develop an equation to determine the amount of beta-amyrin in a mixed sample.


Abril, 2022 | DOI: 10.1098/rsos.211787

Páginas

icms