Menú secundario

Artículos SCI



2023


Materiales Semiconductores para la Sostenibilidad

Surfactant-Dependent Bulk Scale Mechanochemical Synthesis of CsPbBr3 Nanocrystals for Plastic Scintillator-Based X-ray Imaging

Ghosh, J; O'Neill, J; Masteghin, MG; Braddock, I; Crean, C; Dorey, R; Salway, H; Anaya, M; Reiss, J; Wolfe, D; Sellin, P
ACS Applied Nano Materials,

Show abstract ▽

We report a facile, solvent-free surfactant-dependentmechanochemicalsynthesis of highly luminescent CsPbBr3 nanocrystals (NCs)and study their scintillation properties. A small amount of surfactantoleylamine (OAM) plays an important role in the two-step ball millingmethod to control the size and emission properties of the NCs. Thesolid-state synthesized perovskite NCs exhibit a high photoluminescencequantum yield (PLQY) of up to 88% with excellent stability. CsPbBr3 NCs capped with different amounts of surfactant were dispersedin toluene and mixed with polymethyl methacrylate (PMMA) polymer andcast into scintillator discs. With increasing concentration of OAMduring synthesis, the PL yield of CsPbBr3/PMMA nanocompositewas increased, which is attributed to reduced NC aggregation and PLquenching. We also varied the perovskite loading concentration inthe nanocomposite and studied the resulting emission properties. Themost intense PL emission was observed from the 2% perovskite-loadeddisc, while the 10% loaded disc exhibited the highest radioluminescence(RL) emission from 50 kV X-rays. The strong RL yield may be attributedto the deep penetration of X-rays into the composite, combined withthe large interaction cross-section of the X-rays with the high-Zatoms within the NCs. The nanocomposite disc shows an intense RL emissionpeak centered at 536 nm and a fast RL decay time of 29.4 ns. Further,we have demonstrated the X-ray imaging performance of a 10% CsPbBr3 NC-loaded nanocomposite disc.


Agosto, 2023 | DOI: 10.1021/acsanm.3c02531

Química de Superficies y Catálisis

H2-rich syngas production from biogas reforming: Overcoming coking and sintering using bimetallic Ni-based catalysts

Carrasco-Ruiz, S; Zhang, Q; Gándara-Loe, J; Pastor-Pérez, L; Odriozola, JA; Reina, TR; Bobadilla, LF
International Journal of Hydrogen Energy, 48 (2023) 72

Show abstract ▽

Dry reforming of methane is a very appealing catalytic route biogas (mainly composed by greenhouse gases: carbon dioxide and methane) conversion into added value syngas, which could be further upgraded to produce liquid fuels and added value chemicals. However, the major culprits of this reaction are coking and active phase sintering that result in catalysts deactivation. Herein we have developed a highly stable bimetallic Ni–Rh catalyst supported on mixed CeO2–Al2O3 oxide using low-noble metal loadings. The addition of small amounts of rhodium to nickel catalysts prevents coke formation and improves sintering resistance, achieving high conversions over extended reaction times hence resulting in promising catalysts for biogas upgrading.


Agosto, 2023 | DOI: 10.1016/j.ijhydene.2023.03.301

Fotocatálisis Heterogénea: Aplicaciones

ZnO/TiO2 and ZnO/Nb2O5 as effective systems for the treatment of enteric bacteria and commercial dyes

Hernandez, JS; Murcia, JJ; Rojas, H; Hidalgo, MC; Navio, JA
Revista Facultad de Ingeniería-Universidad de Antioquia, 108 (2023) 9-17

Show abstract ▽

In this study, ZnO/TiO2 and ZnO/Nb2O5 photocatalysts were evaluated in the river pollution remediation and wastewater treatment from textile factories, thus, the target pollutants selected for this study were enteropathogenic bacteria and commercial dyes. The mixed oxide systems were extensively analyzed in order to explore their physicochemical properties. From this analysis, it was found that the coupling of two oxides did not modify the crystallinity of the pristine semiconductors. As a result, XRD Wurtzite phase, hexagonal phase, and anatase phases were identified for ZnO, Nb2O5, and TiO2 photocatalyst, respectively. Using UV-Vis DRS, a higher absorption for mixed oxides in the visible region of the electromagnetic spectrum was observed, along with a decrease in the band gap value in these materials. The results of the photocatalytic activity evaluation showed that the coupling of ZnO with Nb2O5 and TiO2 increased the effectiveness of the total organic carbon (TOC) and E. Coli elimination. 83% of TOC and elimination of 64% of E. coli were achieved using ZnO/Nb2O5 photocatalyst for the treatment of water samples from the polluted river.


Julio, 2023 | DOI: 10.17533/udea.redin.20220785

Nanotecnología en Superficies y Plasma

Dielectric multilayers for broadband optical rotation enhancement

Pellegrini, G; Mogni, E; Gil-Rostra, J; Yubero, F; Fossati, S; Dostálek, J; Vázquez, RM; Osellame, R; Celebrano, M; Finazzi, M; Biagioni, P
Nuovo Cimento C-Colloquia and Communications in Physics, 46 (2023) 111

Show abstract ▽

We design a simple dielectric multilayer capable of sustaining broadband superchiral surface waves. We show that the platform can produce large optical chirality enhancements in a wavelength range of hundreds of nanometers. We finally demonstrate that these properties result in the enhancement of the optical rotation signal well above two orders of magnitude, thus extending surface-enhanced chiral spectroscopies beyond the traditionally addressed circular dichroism signals.


Julio, 2023 | DOI: 10.1393/ncc/i2023-23111-1

Reactividad de Sólidos

An overview of polymeric composite scaffolds with piezoelectric properties for improved bone regeneration

Donate, R; Paz, R; Moriche, R; Sayagués, MJ; Alemán-Domínguez, ME; Monzón, M
Materials & Design, 231 (2023) 112085

Show abstract ▽

 

Despite the dramatic change that Tissue Engineering or stem cell therapies have brought to current therapeutic strategies, there is a lack of functionalities in the available biomaterials for manufacturing scaffolds to treat several highly prevalent osseous diseases (osteochondral defects, osteoporosis, etc.). One promising approach to fill this gap involves the development of innovative piezoelectric scaffolds for improved bone regeneration. Scaffolds with the appropriate piezoelectricity can positively influence the proliferation and differentiation of mesenchymal stem cells to regenerate bone tissue, since surface electrical charges play a key role in the mechanotransduction process. In this work, polymeric-based composite scaffolds with piezoelectric properties intended for bone tissue engineering are reviewed. Special attention is paid to biocompatible, piezoelectric polymers that show suitable properties to be pro-cessed by additive manufacturing techniques. Previous works on composite scaffolds based of these poly-meric matrices and containing piezoceramic additives are summarized. The use of piezoelectric nanostructured composite formulations containing lead-free ceramic oxide nanoparticles with per-ovskite structure is highlighted. Also, different commonly applied mechanical stimuli to activate the piezoelectric effect of the developed materials are presented. Finally, other applications of such scaffolds are mentioned, including their capabilities for real-time monitoring


Julio, 2023 | DOI: 10.1016/j.matdes.2023.112085

 

 

 

 

 

icms