Menú secundario

Artículos SCI



2019



Reactividad de Sólidos

Effects of the speed ratio on the efficiency of planetary mills

Real, C; Gotor FJ
Heliyon, 5 (2019) e01227
DOI: 10.1016/j.heliyon.2019.e01227

Abstract

The ignition time (tig) of the mechanically induced self-sustaining reaction (MSR) process involving the formation of TiB2 from Ti/2B elemental mixtures was used to study the influence of the ratio (k = -ωv/ωd) between the rotational speed of the supporting disc (ωd) and vials (ωv) on the milling efficiency of a Pulverisette 4 planetary mill. The variation of the inverse of the ignition time (1/tig), which is directly related to the milling power provided by the planetary mill, with the process conditions has shown that it is not possible to find a single k value as optimal independently of the experimental conditions used (ωd and the ball-to-powder ratio, BPR). Moreover, it was observed that the lowest milling efficiency (longer tig values) was found for k = 1, which is the usual value employed in routine laboratory works. The best efficiencies were found for the larger k values (2.5 or 3). At lower ωd, the shortest tig was obtained for k = 2.5 and at higher ωd for k = 3, independently of BPR.






Febrero, 2019 · DOI: 10.1016/j.heliyon.2019.e01227


Nanotecnología en Superficies y Plasma

Growth of nanocolumnar thin films on patterned substrates at oblique angles

Garcia-Valenzuela, A; Munoz-Pina, S; Alcala, G; Alvarez, R; Lacroix, B; Santos, AJ; Cuevas-Maraver, J; Rico, V; Gago, R; Vazquez, L; Cotrino, J; Gonzalez-Elipe, AR; Palmero, A
Plasma Processes and Polymers, 16 (2019) e1800135
DOI: 10.1002/ppap.201800135

Abstract

The influence of one dimensional substrate patterns on the nanocolumnar growth of thin films deposited by magnetron sputtering at oblique angles is theoretically and experimentally studied. A well-established growth model has been used to study the interplay between the substrate topography and the thin film morphology. A critical thickness has been defined, below which the columnar growth is modulated by the substrate topography, while for thicknesses above, the impact of substrate features is progressively lost in two stages; first columns grown on taller features take over neighboring ones, and later the film morphology evolves independently of substrate features. These results have been experimentally tested by analyzing the nanocolumnar growth of SiO2 thin films on ion-induced patterned substrates.






Febrero, 2019 · DOI: 10.1002/ppap.201800135


Reactividad de Sólidos

Electrical properties of bismuth ferrites: Bi2Fe4O9 and Bi25FeO39

Perejon, A; Gil-Gonzalez, E; Sanchez-Jimenez, PE; West, AR; Perez-Maqueda, LA
Journal of the European Ceramic Society, 39 (2019) 330-339
DOI: 10.1016/j.jeurceramsoc.2018.09.008

Abstract

Bi2Fe4O9 was prepared by solid-state reaction and the electrical properties measured by impedance spectroscopy. After annealing in O-2 at 900 degrees C, Bi2Fe4O9 is an electrically-homogeneous insulator. Its high frequency permittivity is constant (similar to 14.1) over the temperature range 300-400 degrees C and shows no evidence of incipient ferroelectricity at lower temperatures. On annealing in N-2 at 900 degrees C, the pellets gradually decompose.
Bi25FeO39 was prepared by both solid-state reaction and mechanosynthesis. It showed a modest amount of mixed conduction of both oxide ions and holes. Impedance analysis showed a complex response that best fitted an equivalent circuit consisting of a parallel combination of long-range conduction and short range dielectric relaxation elements.
The electrical conductivity of both Bi-2 Fe4O9 and Bi25FeO39 is less than that of BiFeO3 prepared by solid-state reaction, which indicates that any leakage conductivity of BiFeO3 is not due to the possible presence of small amounts of these secondary phases.






Febrero, 2019 · DOI: 10.1016/j.jeurceramsoc.2018.09.008


Reactividad de Sólidos

Synthesis of a cubic Ti(BCN) advanced ceramic by a solid-gas mechanochemical reaction

Chicardi, E; Garcia-Garrido, C; Beltran, AM; Sayagues, MJ; Gotor, FJ
Ceramics International, 45 (2019) 3878-3885
DOI: 10.1016/j.ceramint.2018.11.060

Abstract

In this work, a titanium boron carbonitride advanced ceramic was successfully synthesised by a solid-gas mechanochemical reaction in a planetary ball mill from a mixture of elemental Ti, B, and C under nitrogen atmosphere. This material, with a general formula of Ti(BCN), exhibits a face-centred cubic structure (NaCl type) that is analogous to Ti(CN). This phase was gradually formed with sufficient milling time as a result of diffusional processes, which were permitted by the reduction of the energy in the system caused by the decrease in the spinning rate of the planetary ball mill. In contrast, under more energetic milling conditions, a mechanically induced self-sustaining reaction (MSR) took place, leading to the formation of a TiB2-Ti(CN) ceramic composite. The microstructural characterisation revealed that Ti(BCN) was composed of ceramic particles constituted of misoriented nanocrystalline domains. B, C and N were optimally distributed in the Ti(BCN) phase. The TiB2-Ti (CN) ceramic composite was composed of micrometric and nanometric particles homogeneously distributed. Additionally, the nitrogen content obtained for Ti(BCN) was higher than for the Ti(CN) phase in the composite material.






Febrero, 2019 · DOI: 10.1016/j.ceramint.2018.11.060


Materiales de Diseño para la Energía y Medioambiente

Eu3+ Luminescence in High Charge Mica: An In Situ Probe for the Encapsulation of Radioactive Waste in Geological Repositories

Martin-Rodriguez, R; Aguado, F; Alba, MD; Valiente, R; Perdigon, AC
ACS Applied Materials & Interfaces, 11 (4) (2019) 7559-7565
DOI: 10.1021/acsami.8b20030

Abstract

Isolation of high-level radioactive waste (HLW) in deep geological repositories (DGR) through a multibarrier concept is the most accepted approach to ensure long-term safety. Clay minerals are one of the most promising materials to be used as engineered barriers. In particular, high charge micas, as components of the engineered barrier, show superselectivity for some radioactive isotopes and a large adsorption capacity, which is almost twice that of the other low charge aluminosilicates. In addition, high charge micas are optimum candidates for decontamination of nuclear waste through two different mechanisms; namely an ion exchange reaction and a nonreversible mechanism involving the formation of new stable crystalline phases under hydrothermal conditions. In this work, we report a new in situ optical sensor based on the incorporation of Eu3+ in these high charge micas for tracking the long-term physical-chemical behavior of HLW contaminants in DRG under mild hydrothermal conditions. The incorporation of Eu3+ into the interlayer space of the mica originates a well resolved green and red luminescence, from both the 5D1 and 5D0 excited states, respectively. The formation of new crystalline phases under hydrothermal conditions involves important changes in the Eu3+ emission spectra and lifetime. The most interesting features of Eu3+ luminescence to be used as an optical sensor are (1) the presence or absence of the Eu3+ green emission from the 5D1 excited state, (2) the energy shift of the 5D0 → 7F0 transition, (3) the crystal-field splitting of the 7F1 Eu3+ level, and (4) the observed luminescence lifetimes, which are directly related to the interaction mechanisms between the lanthanide ions and the silicate network.






Febrero, 2019 · DOI: 10.1021/acsami.8b20030


Fotocatálisis Heterogénea: Aplicaciones

Synthesis and Characterization of ZnO-ZrO2 Nanocomposites for Photocatalytic Degradation and Mineralization of Phenol

Lopez, MCU; Lemus, MAA; Hidalgo, MC; Gonzalez, RL; Owen, PQ; Oros-Ruiz, S; Lopez, SAU; Acosta, J
Journal of Nanomaterials (2019) art. 1015876, 12 pages
DOI: 10.1155/2019/1015876

Abstract

ZnO-ZrO2 nanocomposites using zinc (II) acetylacetonate and different ZnO contents (13, 25, 50, and 75% mol) were synthesized through sol-gel method. The synthesis process was strongly related to nanocomposite properties especially on their structural composition. The obtained ZnO-ZrO2 nanomaterials presented tetragonal crystalline structure for zirconia whereas hexagonal one was formed in ZnO. Raman spectroscopy and XRD patterns confirmed the formation of tetragonal zirconia whereas inhibition of monoclinic structure was observed. Addition of ZnO affected the pore size distribution of the composite, and the measured specific surface areas were from 10 m2/g (for pure ZnO) to 46 m2/g (pristine ZrO2). Eg values of ZrO2 were modified by ZnO addition, since calculated values using Kubelka-Munk’s function varied from 4.73 to 3.76 eV. The morphology and size of the nanomaterials investigated by electron microscopy showed formation of nanorods for ZnO with sizes ranging from 50 nm to 300 nm while zirconia was formed by smaller particles (less than 50 nm). The main advantage of using the nanocomposite for photocatalytic degradation of phenol was the mineralization degree, since 75ZnO-ZrO2 nanocomposite surpassed mineralization reached by pure ZnO and also inhibited formation of undesirable intermediates.






Enero, 2019 · DOI: 10.1155/2019/1015876


Materiales Ópticos Multifuncionales

Flexible nanophosphor films doped with Mie resonators for enhanced out-coupling of the emission

Miranda-Munoz, JM; Geng, DL; Calvo, ME; Lozano, G; Miguez, H
Journal of Materials Chemistry C, 7 (2019) 267-274
DOI:

Abstract

Herein, we present a general method to prepare self-standing flexible photoluminescent coatings of controlled opacity for integration into light-emitting diodes (LEDs) employing cost-effective solution-processing methods. From colloidal suspensions of nano-sized phosphors, we fabricate light-emitting transparent films that can be doped with spherical scatterers, which act as Mie resonators that trigger a controlled photoluminescence enhancement, evidenced by the reduction of the guided light along the layer. This results in an enhanced emission compared to that extracted from a bare phosphor layer. We show not only that emission is visible under ultraviolet-LED illumination for both rigid and flexible versions of the coatings, but we also prove the feasibility of the integration of these flexible conversion layers into such devices. We believe these results can contribute to develop more efficient and cost-effective illumination sources by providing efficient and easy-to-handle conversion layers susceptible to excitation by LEDs emitting at wavelengths in the near UV region.






Enero, 2019 · DOI:


Nanotecnología en Superficies y Plasma

Isotope Labelling for Reaction Mechanism Analysis in DBD Plasma Processes

Navascues, P; Obrero-Perez, JM; Cotrino, J; Gonzalez-Elipe, AR; Gomez-Ramirez, A
Catalysts, 9(1) (2019) 45
DOI: 10.3390/catal9010045

Abstract

Dielectric barrier discharge (DBD) plasmas and plasma catalysis are becoming an alternative procedure to activate various gas phase reactions. A low-temperature and normal operating pressure are the main advantages of these processes, but a limited energy efficiency and little selectivity control hinder their practical implementation. In this work, we propose the use of isotope labelling to retrieve information about the intermediate reactions that may intervene during the DBD processes contributing to a decrease in their energy efficiency. The results are shown for the wet reforming reaction of methane, using D2O instead of H2O as reactant, and for the ammonia synthesis, using NH3/D-2/N-2 mixtures. In the two cases, it was found that a significant amount of outlet gas molecules, either reactants or products, have deuterium in their structure (e.g., HD for hydrogen, CDxHy for methane, or NDxHy for ammonia). From the analysis of the evolution of the labelled molecules as a function of power, useful information has been obtained about the exchange events of H by D atoms (or vice versa) between the plasma intermediate species. An evaluation of the number of these events revealed a significant progression with the plasma power, a tendency that is recognized to be detrimental for the energy efficiency of reactant to product transformation. The labelling technique is proposed as a useful approach for the analysis of plasma reaction mechanisms.






Enero, 2019 · DOI: 10.3390/catal9010045


Materiales Coloidales

Enhancing Luminescence and X-ray Absorption Capacity of Eu3+:LaF3 Nanoparticles by Bi3+ Codoping

Mancebo, DG; Becerro, AI; Corral, A; Moros, M; Balcerzyk, M; de la Fuente, JM; Ocana, M
ACS Omega, 4 (2019) 765-774
DOI: 10.1021/acsomega.8b03160

Abstract

Bi3+ codoping has been proposed in this work with a twofold objective, namely, enhancing the luminescence emission of Eu3+:LaF3 nanoparticles (NPs) and increasing their X-ray attenuation capacity, with the purpose of obtaining a bimodal bioprobe for luminescence bioimaging and X-ray computed tomography. The synthesis method, reported here for the first time for LaF3 particles, allowed obtaining uniform, nonaggregated NPs using a homogeneous precipitation in polyol medium at room temperature in just 2 h. The simplicity of the synthesis method allows the large-scale production of NPs. LaF3 NPs with different Eu3+ contents were first synthesized to find the critical Eu3+ concentration, producing the highest emission intensity. This concentration was subsequently used to fabricate Bi3+-Eu3+-codoped LaF3 NPs using the same method. The emission intensity of the codoped NPs increased in more than one order of magnitude, thanks to the possibility of excitation through the Bi3+. Eu3+ energy-transfer band. The luminescence properties of the codoped NPs were analyzed in detail to find the mechanism responsible for the emission enhancement. Finally, it was demonstrated that the high atomic number of Bi3+, higher than that of lanthanides, was an added value of the material because it increased its X-ray attenuation capacity. In summary, the LaF3 NPs codoped with Eu3+ and Bi3+ presented in this work are promising candidates as a bimodal bioprobe for luminescence bioimaging and X-ray computed tomography.






Enero, 2019 · DOI: 10.1021/acsomega.8b03160


Reactividad de Sólidos

La0.59Li0.24TiO3 ceramics obtained by spark plasma sintering: Electric behavior analysis

Pereira, JS; Guerrero, F; Romaguera-Barcelay, Y; Anglada-Rivera, J; Sales, JCC; Silva, RS; Zulueta, Y; Poyato, R; Gallardo, A; Almeida, A; Moreira, JA; Leyet, Y
Materials Research Express, 6 (2019) art. 015504
DOI: 10.1088/2053-1591/aae496

Abstract

This work describes the electric study of Lithium lanthanum titanate (La0.59Li0.24TiO3) ceramics performed by Complex Impedance Spectroscopy. The nanoparticle powders have been synthesized through high energy ball milling and sintered via Spark Plasma Sintering technique. The experimental impedance data have been analyzed using the equivalent circuit model, the Extended Jonscher universal law and the derivative method. From these models, we have determined the dielectric response as well as the grain and grain boundary conductivity. The samples show ionic conductivity values between 10(-5) to 10(-4) S cm(-1) in the studied temperature range, and activation energy values 0.24 eV and 0.48 eV for grain and grain boundary, respectively. These results confirm the Li+ ions mobility through the crystalline structure of the material.






Enero, 2019 · DOI: 10.1088/2053-1591/aae496


Materiales Coloidales

Biocompatibility assessment of up-and down-converting nanoparticles: implications of interferences with in vitro assays

Pem, Barbara; Gonzalez-Mancebo, Daniel; Moros, Maria; Ocana, Manuel; Becerro, Ana Isabel; Pavicic, Ivan; Selmani, Atida; Babic, Michal; Horak, Daniel; Vinkovic Vrcek, Ivana
Methods and Applications in Fluorescence, 7 (2019) 014001
DOI: 10.1088/2050-6120/aae9c8

Abstract

The safety assessment of nanoparticles (NPs) is crucial during their design and development for biomedicine. One of the prerequisite steps during this evaluation is in vitro testing that employs cell-based assays not always validated and well-adapted for NPs. Interferences with in vitro assays may arise due to the nano-related optical, oxidative, fluorescent, surface and catalytic properties of NPs. Thus, proper validation of each assay system has to be performed for each NP type. This study aimed to evaluate the applicability of the most common in vitro cytotoxicity assays for the safety assessment of up- and down-converting lanthanide-doped NPs. Conventional cell viability tests and fluorescence-based assays for oxidative stress response were selected to determine the biological effects of up- and down-converting NPs to human brain cells. Comparison with known silver and iron oxide NPs was made for verification purposes. Both the plate reader and flow cytometric measurements were examined. The obtained results indicated that both types of Ln-doped NPs interfered to a much lesser extent than metallic NPs. In addition, the great potential of both up- and down-converting NPs for biomedicine was manifested due to their biocompatibility and low toxicity.






Enero, 2019 · DOI: 10.1088/2050-6120/aae9c8


Materiales Ópticos Multifuncionales

Highly Efficient Transparent Nanophosphor Films for Tunable White-Light-Emitting Layered Coatings

Geng, DL; Lozano, G; Miguez, H
ACS Applied Materials & Interfaces, 11 (4) (2019) 4219-4225
DOI: 10.1021/acsami.8b17368

Abstract

Bright luminescence in rare-earth (RE) nanocrystals, the so-called nanophosphors, is generally achieved by choosing a host that enables an effective excitation of the RE activator through charge or energy transfer. Although tungstate, molybdate, or vanadate compounds provide the aforementioned transfer, a comparative analysis of the efficiency of such emitters remains elusive. Herein, we perform a combined structural and optical analysis, which reveals that the tetragonal GdVO4 matrix gives rise to the highest efficiency among the different transparent nanophosphor films compared. Then, we demonstrate that by a sequential stacking of optical quality layers made of Eu3+- and Dy3+-doped nanocrystals, it is possible to attain highly transparent white-light-emitting coatings of tunable shade with photoluminescence quantum yields above 35%. Layering provides a precise dynamic tuning of the chromaticity based on the photoexcitation wavelength dependence of the emission of the nanophosphor ensemble without altering the chemical composition of the emitters or degrading their efficiency. The total extinction of the incoming radiation along with the high quantum yields achieved makes these thin-layered phosphors one of the most efficient transparent white converter coatings ever developed.






Enero, 2019 · DOI: 10.1021/acsami.8b17368


Tribología y Protección de Superficies

Influence of Al and Y content on the oxidation resistance of CrAlYN protective coatings for high temperature applications: New insights about the Y role

Rojas, TC; Dominguez-Meister, S; Brizuela, M; Sanchez-Lopez, JC
Journal of Alloys and Compounds, 777 (2019) 1172-1181
DOI: 10.1016/j.jallcom.2018.09.280

Abstract

CrAlYN hard coatings with two different average Al contents: similar to 16 at.% and similar to 25 at.%, and Y concentration varying between 1.2 and 5.7 at.% were deposited by direct current reactive magnetron co-sputtering of mixed Cr-Al and Y targets on commercial M2 steel substrates. The samples were heated to 1000 degrees C in air during 2 h to study their oxidation resistance and thermal stability. The Y content is critical and the coatings present different behaviour depending on the Al content. The best oxidation resistance and thermal stability are obtained for the coating with similar to 16 at.% Al and 3.4 at.% Y. The initial film microstructure and the cubic phase (fcc-CrAlN) were retained, and a thin (Cr,Al)(2)O-3 oxide protective scale was formed. At lower Y content (1.2 at.%) iron, from the substrate crosses the coating, while a higher content (4.6 at.%) avoided the iron diffusion at the expense of a thicker oxide scale with new oxide phases. The coatings with higher Al content (similar to 25 at. %) were not thermally stable at 1000 degrees C. A good oxidation resistance was obtained for 2.6 at.% of Y although new phases (hcp-AlN and Cr-Fe) were formed. Higher amount of yttrium (similar to 5.7 at. %) led to the complete oxidation of the coating. 






Enero, 2019 · DOI: 10.1016/j.jallcom.2018.09.280


Fotocatálisis Heterogénea: Aplicaciones

Coupling of Ag2CO3 to an optimized ZnO photocatalyst: Advantages vs. disadvantages

P. Sánchez-Cid; C. Jaramillo-Páez; J.A. Navío; A.N. Martín-Gómez; M.C. Hidalgo
Journal of Photochemistry and Photobiology A: Chemistry, 369 (2019) 119-132
DOI: 10.1016/j.jphotochem.2018.10.024

Abstract

With the aim of improving the photocatalytic properties of a previously optimized zinc oxide photocatalyst, the effect of the incorporation of different amounts of Ag2CO3 on the aforementioned ZnO has been studied. For this purpose we report the synthesis, by means of simple precipitation procedures, of bare ZnO and Ag2CO3 samples as well as the coupled materials ZnO/Ag2CO3 (X) (where X = 1%, 2%, 4% and 5% in molar percentages). Both, single and coupled materials have been characterized by different techniques (XRD, XRF, N2-absorption, SEM, TEM, UV–vis/DRS and XPS). To assess the advantages or disadvantages that Ag2CO3 addition could have over the optimized ZnO, the photocatalytic properties have been established by following the photo-degradation of selected toxic molecules, both in the UV and in the visible, as well as using complementary techniques of liquid medium analyses (TOC and Atomic Emission Spectrometry with plasma ICP). Three selected substrates were chosen: Rhodamine B (RhB) as a dye, and phenol and caffeine as colourless recalcitrant toxic molecules.
Our results suggest that although the use of Ag2CO3 could be beneficial to implement the optical absorption towards the visible region, however, other effects have to be bore in mind, such as the photo-corrosion of Ag2CO3 and the chemical structure of the chosen substrate, to elucidate whether the addition of Ag2CO3 has beneficial or detrimental effects on the photocatalytic properties of the coupled ZnO/Ag2CO3 materials.






Enero, 2019 · DOI: 10.1016/j.jphotochem.2018.10.024


Materiales de Diseño para la Energía y Medioambiente

Influence of framework and interlayer on the colloidal stability of design swelling high-charged micas

Osuna, FJ; Cota, A; Fernandez, MA; Pavon, E; Sanchez, RMT; Alba, MD
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 561 (2019) 32-38
DOI: 10.1016/j.colsurfa.2018.09.086

Abstract

Stability of colloidal clay minerals dispersion of fundamental in many industrial processes. Therefore, surface charge of the synthetic swelling high-charged mica family, Na-Mica-n (n = 2 or 4, n is the total layer charge) were investigated to study its colloidal dispersion stability as a function of the framework and interlayer space composition. Na-Mica-n (n = 2 or 4) micas were synthesized and functionalized with ethylammonium, mercaptoethylammonium or octadecylammonium. Their zeta-potential evolutions as a function of solution pH were correlated with their structural, compositional and morphological characteristics. The results have shown that the total charge of swelling high charged micas, Mica-n, didn´t affect significantly their colloidal dispersion stability, the interlayer composition and interlayer cation arrangement were the main factors of colloidal behaviour. The synthesis and functionalization of those synthetic micas can be tuned for their optimal use.






Enero, 2019 · DOI: 10.1016/j.colsurfa.2018.09.086



2018



Química de Superficies y Catálisis

Understanding the Role of the Acid Sites in 5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid Reaction over Gold Catalysts: Surface Investigation on CexZr1-xO2 Compounds

Megias-Sayago, C; Chakarova, K; Penkova, A; Lolli, A; Ivanova, S; Albonetti, S; Cavani, F; Odriozola, JA
ACS Catalysis, 8 (2018) 11154-11164
DOI: 10.1021/acscatal.8b02522 DEC 2018

Abstract

A series of CexZr1-xO2 supports with different Ce/Zr molar ratios were utilized for the preparation of gold catalyst used in the selective oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandicarboxylic acid. The used method of gold deposition allows the preparation of gold particles with homogeneous size and shape distribution, a formulation very useful for studies dedicated to revealing the support participation in the reaction. The supports are characterized by Fourier transform infrared spectroscopy using CO as probe molecule, and the sample catalytic activity is thereafter correlated to the support acid site distribution. The possible participation of its Lewis/Bronsted acidity in the reaction mechanism is also proposed.






Diciembre, 2018 · DOI: 10.1021/acscatal.8b02522 DEC 2018


Reactividad de Sólidos

Role of calcium looping conditions on the performance of natural and synthetic Ca-based materials for energy storage

Sarrion, B; Perejon, A; Sanchez-Jimenez, PE; Perez-Maqueda, LA; Valverde, JM
Journal of CO2 utilization, 28 (2018) 374-384
DOI: 10.1016/j.jcou.2018.10.018

Abstract

In this work, the multicycle activity of natural CaO precursors (limestone and dolomite) and Ca-based composites (Ca3Al2O6/CaCO3 and ZrO2/CaCO3 mixtures) has been studied for Thermochemical Energy Storage (TCES) in Concentrated Solar Power (CSP) plants by means of the Calcium-Looping process (CaL), using two integration schemes proposed elsewhere that differ in the calcination stages. Under CSP-He conditions, calcination for CaO regeneration is performed under pure He at low temperatures (725 degrees C) while under CPS-CO2 conditions calcination is carried out under pure CO2 at high temperatures (950 degrees C). The latter avoids the use of selective membranes to separate He from CO2 even though it requires the use of more expensive materials for solar receptors. Carbonation/calcination conditions drastically affect the multicycle CO2 uptake of the materials tested. Effective multicycle conversion is higher in CSP-He tests due to the mild conditions employed for calcination, which mitigates CaO sintering. On the other hand, the harsh calcination conditions used in CSP-CO2 tests enhance sintering of CaO derived from limestone and the Ca3Al2O6/CaCO3 composite due to the low Tammann temperature of Ca3Al2O6. CaO sintering is hindered by the presence of inert oxides with high Tammann temperatures, such as ZrO2 in the ZrO2/CaCO3 composite and MgO in dolomite. Dolomite derived CaO shows high effective conversion values along the carbonation/calcination cycles when tested under both types of conditions, as compared to limestone and the composites, which suggests that the integration scheme based on CSP-CO2 conditions would be a feasible alternative to CSP-He if natural dolomite were used as CaO precursor.






Diciembre, 2018 · DOI: 10.1016/j.jcou.2018.10.018


Materiales Avanzados

Degradation of a LDPE film applied as a greenhouse cover design material: the effect of ageing and mechanical modelling

Garzon, Eduardo; Ortiz Rodriguez, Isabel Maria; Castillo, Jose; Jose Sanchez-Soto, Pedro
Revista de la Construcción, 17 (3) (2018) 457-464
DOI: 10.7764/RDLC.17.3.457 DEC 2018

Abstract

In this work, we studied the mechanical performance of an LDPE film (0.22 mm in thickness) used as a material in the design of greenhouse covers. We investigated the effects of ageing at different periods of its service life and applying chemical substance treatments used as pesticides on greenhouse crops and after breakage using mechanical traction. Numerical simulations were performed using the finite element method. For this purpose, one section of the complete geometry of the greenhouse cover and different load conditions (1-5 kPa) were considered for the modelling. The performance of the polymer was assumed to be linearly elastic to simplify the governing equations. The study demonstrated that the LDPE film used was no longer effective as a greenhouse cover film due to the degradation of its mechanical properties. It was shown that the general performance of this film was in the plastic zone and its performance was non-linear. The results deduced from the present study are of interest because they show the material failure process of greenhouse covers in relation to the degradation process.






Diciembre, 2018 · DOI: 10.7764/RDLC.17.3.457 DEC 2018


Química de Superficies y Catálisis

New concept for old reaction: Novel WGS catalyst design

Garcia-Moncada, N; Gonzalez-Castano, M; Ivanova, S; Centeno, MA; Romero-Sarria, F; Odriozola, JA
Applied Catalysis B-Environmental, 238 (2018) 1-5
DOI: 10.1016/j.apcatb.2018.06.068

Abstract

The viability of water gas shift catalytic system for mobile application passes through obligatory reactor volume reduction, achieved normally by using less charge of more efficient catalyst. Completely new concept for catalyst design is proposed: a catalytic system including classically reported WGS catalysts of different nature or active phase (Cu, Pt or Au) mechanically mixed with an ionic conductor. The influence of the later on catalyst activity is studied and discussed, more precisely its effect on the rate of the reaction-limiting step and catalysts' efficiency. It is demonstrated with this study, that the presence of an ionic conductor in contact with a WGS catalyst is essential for the water supply (dissociation and transport), thereby potentiating the water activation step, whatever the mechanism and catalyst overall performance.






Diciembre, 2018 · DOI: 10.1016/j.apcatb.2018.06.068


Fotocatálisis Heterogénea: Aplicaciones

A comparative assessment of the UV-photocatalytic activities of ZnO synthesized by different routes

Jaramillo-Paez, C; Sanchez-Cid, P; Navio, JA; Hidalgo, MC
Journal of Environmental Chemical Engineering, 6 (2018) 7161-7171
DOI: 10.1016/j.jece.2018.11.004

Abstract

ZnO was synthesized by a precipitation procedure, free of template agent, by mixing aqueous solutions of Zn (OAc)(2) and dissolved Na2CO3 at pH ca. 7. This material was calcined at different temperatures (200-600 degrees C for 2 h). In two other alternative procedures, after the precipitation, the suspension was taken to hydrothermal treatments or to microwave treatments, subjecting them to calcination treatments at the same temperatures as the previous material. All materials were characterized using various techniques. The photocatalytic activity was assessed in the degradation of methyl orange and phenol using UV-illumination and evaluating the corresponding percentages of conversion and mineralization. A minimal difference between the relative intensities of the exposed faces (I100I002) related to XRD for the synthesized samples seems to be an important factor in obtaining good photocatalytic properties. This minimum, was achieved with a calcination treatment at 400 degrees C for 2 h. With this calcination treatment, no significant variations were observed in the photocatalytic activities of ZnO obtained by the three procedures, although in all cases the zinc oxides obtained exhibited, for each substrate, higher UV-photocatalytic activities than those obtained with TiO2 (P25) used as a reference catalyst. In all cases, the samples showed no photocatalytic activity in the visible region of the spectrum.






Diciembre, 2018 · DOI: 10.1016/j.jece.2018.11.004


Química de Superficies y Catálisis

CO/H-2 adsorption on a Ru/Al2O3 model catalyst for Fischer Trospch: Effect of water concentration on the surface species

Jimenez-Barrera, E; Bazin, P; Lopez-Cartes, C; Romero-Sarria, F; Daturi, M; Odriozola, JA
Applied Catalysis B-Environmental, 237 (2018) 986-995
DOI: 10.1016/j.apcatb.2018.06.053

Abstract

Water presence and concentration strongly influence CO conversion and CS+ selectivity in the Fischer Tropsch reaction. In this work, the influence of the water concentration was investigated using a model Ru/Al2O3 (5 wt. %) catalyst. The surface species formed after CO and H-2 adsorption in dry and wet (different water concentrations) conditions were analyzed by FTIR. Firstly, water adsorption was carried out up to complete filling of the pores and then CO was put in contact with the catalyst. The absence of adsorbed CO species in these conditions evidences that CO diffusion in water controls the access of the gas to the active sites and explains the negative effect of high water concentrations reported by some authors. Moreover, the adsorption of a mixture of CO + H-2 + H2O, being the water concentration close to that needed to have a monolayer, and a dry mixture of CO + H-2 were carried out and compared. Results evidence that water in this low concentration, is able to gasify the surface carbon species formed by CO dissociation on the metallic sites. This cleaning effect is related to the positive effect of water on CO conversion detected by some authors.






Diciembre, 2018 · DOI: 10.1016/j.apcatb.2018.06.053


Química de Superficies y Catálisis

Metal Micro-Monoliths for the Kinetic Study and the Intensification of the Water Gas Shift Reaction

Garcia-Moncada, N; Groppi, G; Beretta, A; Romero-Sarria, F; Odriozola, JA
Catalysts, 8 (2018) art. 594
DOI: 10.3390/catal8120594

Abstract

A kinetic study of the water gas shift (WGS) reaction has been carried out on a Pt-based catalyst promoted by a Zr-based proton conductor. The investigation was first performed on powders with diluted feed mixtures and then extended to more severe and representative conditions by using a catalyst coated metallic micromonolith. Temperature measurements reveal that isothermal conditions were obtained along the micromonolith during the tested conditions. In addition, the very thin catalytic layer allows for the discarding of intraporous resistances, providing excellent conditions to analyse the kinetics of the WGS reaction under the integral regime. The proposed rate expression accounts for independence on CO concentration, an inhibiting effect of H-2 and a promoting effect of H2O; kinetic orders on CO and H-2 are in line with those reported in the literature for the Pt-based catalyst. Instead, the obtained reaction order of water (0.36) is significantly lower than that reported for unpromoted catalysts (typically 0.77-1.10) in good agreement with the proposed water-enhancer effect of the proton conductor on the rate-limiting step. Metallic micromonoliths turn out to be a powerful tool for the kinetic investigation, due to the absence of mass and heat transport limitations and represent a strategy for the intensification of the WGS unit for future applications of fuel processors in small mobile devices.






Diciembre, 2018 · DOI: 10.3390/catal8120594


Reactividad de Sólidos

Molten carbonate salts for advanced solar thermal energy power plants: Cover gas effect on fluid thermal stability

Fereres, S; Prieto, C; Gimenez-Gavarrell, P; Rodriguez, A; Sanchez-Jimenez, PE; Perez-Maqueda, LA
Solar Energy Materials and Solar Cells, 188 (2018) 119-126
DOI: 10.1016/j.solmat.2018.08.028

Abstract

The eutectic mixture Li2CO3-Na2CO3-K2CO3 is investigated as a high temperature heat transfer fluid and storage medium alternative for molten salt solar thermal power plants. This salt has an operating temperature range of 400–700 °C, enabling the use of higher temperature/efficiency power cycles. However, this carbonate mixture is known to thermally decompose in air. This study evaluates the thermal stability of the salt mixture under different cover gases: air, nitrogen, carbon dioxide, and an 80/20 carbon dioxide/air mixture. Initial characterization is performed through thermogravimetric analysis (TGA), followed by larger scale testing in a custom-made reactor to simulate conditions closer to its practical use. The results show improved thermal stability with a CO2 atmosphere. The decomposition kinetics under different cover gases are estimated from TGA data. However, larger-scale, longer duration experiments show much slower decomposition rates compared to the classical TGA approach. These findings indicate that the main contribution to mass loss in TGA is due to vaporization rather than thermal decomposition. Thus, a proper evaluation of the molten salt´s thermal stability can only be obtained from reactor experiments where vaporization is inhibited. Very long induction periods (of the order of days) are observed, suggesting that the kinetic decomposition mechanism is a nucleation and growth type. Other considerations for future plants incorporating these high temperature salts are discussed.






Diciembre, 2018 · DOI: 10.1016/j.solmat.2018.08.028


Química de Superficies y Catálisis

Policies and Motivations for the CO2 Valorization through the Sabatier Reaction Using Structured Catalysts. A Review of the Most Recent Advances

Navarro, JC; Centeno, MA; Laguna, OH; Odriozola, JA
Catalysts, 8 (2018) art. 578
DOI: 10.3390/catal8120578

Abstract

The current scenario where the effects of global warming are more and more evident, has motivated different initiatives for facing this, such as the creation of global policies with a clear environmental guideline. Within these policies, the control of Greenhouse Gase (GHG) emissions has been defined as mandatory, but for carrying out this, a smart strategy is proposed. This is the application of a circular economy model, which seeks to minimize the generation of waste and maximize the efficient use of resources. From this point of view, CO2 recycling is an alternative to reduce emissions to the atmosphere, and we need to look for new business models which valorization this compound which now must be considered as a renewable carbon source. This has renewed the interest in known processes for the chemical transformation of CO2 but that have not been applied at industrial level because they do not offer evident profitability. For example, the methane produced in the Sabatier reaction has a great potential for application, but this depends on the existence of a sustainable supply of hydrogen and a greater efficiency during the process that allows maximizing energy efficiency and thermal control to maximize the methane yield. Regarding energy efficiency and thermal control of the process, the use of structured reactors is an appropriate strategy. The evolution of new technologies, such as 3D printing, and the consolidation of knowledge in the structing of catalysts has enabled the use of these reactors to develop a wide range of possibilities in the field. In this sense, the present review presents a brief description of the main policies that have motivated the transition to a circular economy model and within this, to CO2 recycling. This allows understanding, why efforts are being focused on the development of different reactions for CO2 valorization. Special attention to the case of the Sabatier reaction and in the application of structured reactors for such process is paid.






Diciembre, 2018 · DOI: 10.3390/catal8120578


Materiales Coloidales - Materiales Ópticos Multifuncionales - Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Revealing the substitution mechanism in Eu3+:CaMoO4 and Eu3+,Na+:CaMoO4 phosphors

Becerro, AI; Allix, M; Laguna, M; Gonzalez-Mancebo, D; Genevois, C; Caballero, A; Lozano, G; Nunez, NO; Ocana, M
Journal of Materials Chemistry C, 6 (2018) 47
DOI: 10.1039/c8tc04595j

Abstract

Eu3+-Doped calcium molybdate is an excellent phosphor for lighting and display devices due to the very intense pure red emission after UV excitation. It has been reported in the literature that the CaMoO4 unit cell volume expands after Eu3+ doping, in spite of the smaller Eu3+ ionic radius compared with Ca2+. Likewise, several studies found that the emission intensity of the phosphor could be improved by codoping with alkaline ions like Li+, Na+ or K+. None of these studies correlated the apparent volume expansion and luminescence enhancement with the crystal structural details. This paper analyses the aliovalent substitution mechanism and crystal structure of Eu3+:CaMoO4 and Eu3+,Na+:CaMoO4 phosphors using complementary techniques like Raman spectroscopy, EXAFS and SPD. We found that the substitution mechanism was different for both systems, with Ca site vacancies forming in the Eu3+:CaMoO4 phosphors and leading to Ca1-3xEu2xxMoO4 compositions, while the Eu3+,Na+:CaMoO4 phosphors formed Ca1-2xEuxNaxMoO4. SPD showed that the cell volume expansion observed with increasing Eu3+ content is related to the increase of the Mo-O bond distance due to the higher electronegativity of Eu3+ compared with Ca2+. Finally, it was shown that the luminescence properties, i.e. lifetime values and quantum yields (the latter reported here for the first time), do not depend on the presence of monovalent ions in the crystal structure but, exclusively, on the Eu3+ content of the phosphor. The integral and detailed analysis of the materials presented in this paper, ranging from crystal structure to luminescent properties including elemental composition, allows a full picture of the structure-property relationships that had never been addressed before for CaMoO4-based phopshors.






Diciembre, 2018 · DOI: 10.1039/c8tc04595j


Materiales Ópticos Multifuncionales

Improving the Bulk Emission Properties of CH3NH3PbBr3 by Modifying the Halide-Related Defect Structure

Tiede, David O.; Calvo, Mauricio E.; Galisteo-Lopez, Juan F.; Miguez, Hernan
Journal of Physical Chemistry C, 122 (2018) 27250-27255
DOI: 10.1021/acs.jpcc.8b09315 DEC 6 2018

Abstract

The peculiar defect chemistry of hybrid organic–inorganic lead halide perovskites is believed to be partially responsible for the outstanding performance of this solution-processed material in optoelectronic devices. While most effort has been put on the management of halide defects (the ones presenting the highest mobility) for CH3NH3PbI3, its bromide counterpart has not been so widely studied. Although the former is the material of choice for photovoltaics, the latter is present in most light-emitting applications. Here, we report how the exposure of CH3NH3PbBr3 single crystals to a bromine atmosphere strongly affects its emission properties. Such improvement takes place in the absence of apparent signs of degradation and remains for tens of hours. We propose an explanation based on the defect structure for this material where bromine-related defects can act as deep or shallow traps. These results are of relevance for a material expected to be present in a new generation of solution-processed light-emitting devices.






Diciembre, 2018 · DOI: 10.1021/acs.jpcc.8b09315 DEC 6 2018


Reactividad de Sólidos

Mechanically induced combustion synthesis of niobium carbonitride nanoparticles

Jalaly, M; Gotor, FJ; Sayagues, MJ
Journal of Solid State Chemistry, 267 (2018) 106-112
DOI: 10.1016/j.jssc.2018.08.027

Abstract

Niobium carbonitride [Nb(C,N)] nanoparticles were synthesized by a combustive mechanochemical reaction in the Mg/Nb2O5/C3H6N6 system. High-energy ball milling was used to promote a mechanically induced self-sustaining reaction (MSR). Combustion occurred after a very short milling period of 5 min. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS) analyses revealed that the nature of the product is an intermixed carbonitride material. The formation mechanism of Nb(C,N) resulted from the magnesiothermic reduction of niobium oxide to generate elemental Nb, which then reacted with the species generated from the melamine decomposition.






Noviembre, 2018 · DOI: 10.1016/j.jssc.2018.08.027


Química de Superficies y Catálisis

Analysis of the variables that modify the robustness of Ti-SiO2 catalysts for alkene epoxidation: Role of silylation, deactivation and potential solutions

Plata, JJ; Pacheco, LC; Remesal, ER; Masa, MO; Vega, L; Marquez, AM; Odriozola, JA; Sanz, JF
Molecular Catalysis, 459 (2018) 55-60
DOI: 10.1016/j.mcat.2018.08.010

Abstract

Catalytic epoxidation of alkenes plays an essential role in the transformation and synthesis of many organic chemicals. Ti atoms grafted on mesoporous silica, silylated on the surface, is considered the most active and selective catalyst for these reactions. However, the durability and robustness of the active centers remain as the main drawback in industry. In this paper, the characterization of industrial samples is combined with DFT calculations to rationalize the deactivation process of the catalyst and improve its performance. Silylating agents are characterized by experimental and simulated 29Si-NMR and their role in the catalytic mechanism is analysed. Potential deactivation processes are identified before, during and after the reaction. Modifications of the silylating agents and of the active center are proposed to improve the durability of the catalyst.






Noviembre, 2018 · DOI: 10.1016/j.mcat.2018.08.010


Materiales de Diseño para la Energía y Medioambiente

Environmentally friendly monolithic highly-porous biocarbons as binder-free supercapacitor electrodes

Orlova, TS; Shpeizman, VV; Glebova, NV; Nechitailov, AA; Spitsyn, AA; Ponomarev, DA; Gutierrez-Pardo, A; Ramirez-Rico, J
Reviews on Advanced Materials Science, 55 (2018) 50-60
DOI: 10.1515/rams-2018-0027

Abstract

A simple, low-cost and environmentally friendly method has been used to obtain highly porous biomorphic carbon monoliths with a good combination of interconnected macro-, meso- and microporosity, and good electrical conductivity and mechanical strength, making these biocarbon materials interesting for electrochemical applications as binder-free electrodes. Highly porous monolithic biocarbons were obtained from beech wood precursors through pyrolysis and subsequent surface modification in a steam heated to 970 degrees C with different activation times. The obtained biocarbons demonstrated good electrical conductivity and mechanical strength. They were studied as electrodes for supercapacitors in half cell experiments, demonstrating maximum gravimetric capacitance of 200 F g(-1) in a basic media at scan rate 1 mV s(-1). Galvanostatic charge-discharge experiments showed maximum capacitance of 185 F g(-1) at current density of 0.15 A g(-1) and similar to 100 F g(-1) at current density of 0.75 A g(-1). It has been shown that in addition to the developed porous surface, the micropores with diameters exceeding 1 nm play a key role for the enhanced electrochemical capacity. Long-cycling experiments demonstrated excellent stability of the monolithic biocarbon electrodes with no reduction of the initial capacitance values after 600 cycles in voltammetry.






Noviembre, 2018 · DOI: 10.1515/rams-2018-0027


Materiales de Diseño para la Energía y Medioambiente

Sustainable Fabrication of Plant Cuticle-Like Packaging Films from Tomato Pomace Agro-Waste, Beeswax, and Alginate

Tedeschi, G; Benitez, JJ; Ceseracciu, L; Dastmalchi, K; Itin, B; Stark, RE; Heredia, A; Athanassiou, A; Heredia-Guerrero, JA
ACS Sustainable Chemistry & Engineering, 6 (2018) 14955-14966
DOI: 10.1021/acssuschemeng.8b03450

Abstract

Plant cuticles have been used as models to produce hydrophobic films composed of sodium alginate, the fatty acid fraction of tomato pomace agrowaste, and beeswax. The fabrication process consisted of the blending of components in green solvents (water and ethanol) and a subsequent thermal treatment (150 degrees C, 8 h) to polymerize unsaturated and polyhydroxylated fatty acids from tomato pomace. When sodium alginate and tomato pomace fatty acids were blended, free-standing films were obtained. These films were characterized to evaluate their morphological (SEM), chemical (solid-state NMR, ATR-FTIR), mechanical (tensile tests), thermal (TGA), and hydrodynamic (water contact angle, uptake, and permeability) properties. A comparison between nonpolymerized and polymerized samples was carried out, revealing that the thermal treatment represents a sustainable route to create structured, composite networks of both components. Finally, beeswax was added to the blend with the same amounts of sodium alginate and tomato pomace fatty acids. The presence of the wax improved the hydrophobicity and the mechanical and water barrier properties as well as decreased the water uptake. These results indicate that polymerized plant cuticle-like films have valuable potential for packaging applications.






Noviembre, 2018 · DOI: 10.1021/acssuschemeng.8b03450


Química de Superficies y Catálisis

Selective CO methanation with structured RuO2/Al2O3 catalysts

Munoz-Murillo, A; Martinez, LM; Dominguez, MI; Odriozola, JA; Centeno, MA
Applied Catalysis B-Environmental, 236 (2018) 420-427
DOI: 10.1016/j.apcatb.2018.05.020

Abstract

Active and selective structured RuO2/Al2O3 catalysts for CO methanation using a flow simulating CO2-rich reformate gases from WGS and PROX units (H-2 excess, CO2 presence and 300 ppm CO concentration) were prepared. Both, the RuO2/Al2O3 powder and the slurry prepared from it for its structuration by washcoating of the metallic micromonolithic structure, were also active and selective. Both the slurry (S-RuAl) and micro monoliths (M-RuAl) were able to completely and selectively methanate CO at much lower temperatures than the parent RuAI powder. The optimal working temperature in which the CO conversion is maximum and the CO2 conversion is minimized was determined to be from 149 degrees C to 239 degrees C for S-RuAl and from 165 degrees C to 232 degrees C for M-RuAl, whilst it was from 217 degrees C to 226 degrees C for RuAI powder. TPR, XRD and TEM measurements confirmed that the changes in the activity and selectivity for CO methanation among the considered catalysts can be related with modifications in the surface particle size of ruthenium and its reducibility. These were ascribed to the metallic substrate, the presence of PVA and colloidal alumina in the slurry preparation, the aqueous and acidic media and the thermal treatment used, resulting in a more active and selective catalysts than the parent powder.






Noviembre, 2018 · DOI: 10.1016/j.apcatb.2018.05.020


Nanotecnología en Superficies y Plasma

Quantitative analysis of Yb 4d photoelectron spectrum of metallic Yb

Pauly, N; Yubero, F; Tougaard, S
Surface & Coatings Technology, 50 (2018) 1168-1173
DOI: 10.1002/sia.6402

Abstract

The measured Yb 4d(3/2) intensity is larger than the Yb 4d(5/2) in X-ray photoelectron (XPS) emission of metallic Yb, which is unexpected. The shape and intensity of photoelectron peaks are strongly affected by extrinsic excitations due to electron transport out of the surface (including bulk and surface effects) and to intrinsic excitations due to the sudden creation of the static core hole. To quantitatively extract from experimental XPS the primary excitation spectrum (ie, the initial excitation process) of the considered transition, these effects must be included within the theoretical description. The combined effect of both extrinsic and intrinsic excitations can be described by an effective energy-differential inelastic electron scattering cross section for XPS evaluated by a dielectric response model with the dielectric function as only input. Then, using this cross section, a direct evaluation of the primary excitation spectrum is performed by standard peak shape analysis for thick homogeneous samples. We use this approach in the present paper to determine the Yb 4d photoemission spectrum for metallic Yb. We show that the unexpected larger intensity of Yb 4d(3/2) compared to 4d(5/2) can be fully accounted for by our model and that the total spectrum consists of a sum of symmetric primary excitation peaks.






Noviembre, 2018 · DOI: 10.1002/sia.6402


Materiales de Diseño para la Energía y Medioambiente

Valorization of Tomato Processing by-Products: Fatty Acid Extraction and Production of Bio-Based Materials

Benitez, JJ; Castillo, PM; del Rio, JC; Leon-Camacho, M; Dominguez, E; Heredia, A; Guzman-Puyol, S; Athanassiou, A; Heredia-Guerrero, JA
Materials, 11 (2018) art. 2211
DOI: 10.3390/ma11112211

Abstract

A method consisting of the alkaline hydrolysis of tomato pomace by-products has been optimized to obtain a mixture of unsaturated and polyhydroxylated fatty acids as well as a non-hydrolysable secondary residue. Reaction rates and the activation energy of the hydrolysis were calculated to reduce costs associated with chemicals and energy consumption. Lipid and non-hydrolysable fractions were chemically (infrared (IR) spectroscopy, gas chromatography/mass spectrometry (GC-MS)) and thermally (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)) characterized. In addition, the fatty acid mixture was used to produce cutin-based polyesters. Freestanding films were prepared by non-catalyzed melt-polycondensation and characterized by Attenuated Total Reflected-Fourier Transform Infrared (ATR-FTIR) spectroscopy, solid-state nuclear magnetic resonance (NMR), DSC, TGA, Water Contact Angles (WCA), and tensile tests. These bio-based polymers were hydrophobic, insoluble, infusible, and thermally stable, their physical properties being tunable by controlling the presence of unsaturated fatty acids and oxygen in the reaction. The participation of an oxidative crosslinking side reaction is proposed to be responsible for such modifications.






Noviembre, 2018 · DOI: 10.3390/ma11112211


Propiedades mecánicas, modelización y caracterización de cerámicos avanzados

Exotic grain growth law in twinned boron carbide under electric fields

Moshtaghioun, BM; Gomez-Garcia, D; Rodriguez, AD
Journal of the European Ceramic Society, 38 (2018) 4590-4596
DOI: 10.1016/j.jeurceramsoc.2018.06.029

Abstract

Grain growth is a ubiquitous phenomenon in all materials, and it affects both structural and functional properties. Despite its intrinsic importance, a full comprehension of grain growth from a fundamental point of view-i.e., from the nanoscale to the macroscale-is still a pending issue. In practical terms, our knowledge relies on the classical kinetic laws reported sixty years ago. 

This paper reports the violation of such classical laws in boron carbide ceramics consolidated by spark plasma sintering. The conjunction of high temperature gradients with large compressive stress when a pulse electric current passes through the ceramic powders gives rise to an intense twinning-detwinning formation. These forming steps at the grain boundaries change the grain mobility drastically. Therefore, a new 'exotic' law for grain-growth kinetics is found and validated at different temperatures and dwell times.






Noviembre, 2018 · DOI: 10.1016/j.jeurceramsoc.2018.06.029


Nanotecnología en Superficies y Plasma - Materiales Nanoestructurados y Microestructura

Nanoporous Pt-based catalysts prepared by chemical dealloying of magnetron-sputtered Pt-Cu thin films for the catalytic combustion of hydrogen

Giarratano, F; Arzac, GM; Godinho, V; Hufschmidt, D; de Haro, MCJ; Montes, O; Fernandez, A
Applied Catalysis B-Environmental, 235 (2018) 168-176
DOI: 10.1016/j.apcatb.2018.04.064

Abstract

In this work, we prepared SiC-supported Pt-Cu thin films by magnetron sputtering for use as catalysts for the combustion of hydrogen under oxidizing conditions. We tested the catalysts as prepared and after chemical dealloying. A methodology is presented to fabricate catalytic thin films of a desired composition with tailored magnetron targets with lower Pt consumption. The deposition gas was changed to prepare columnar (Ar-deposited) and closed-porous (He-deposited) films to study the effect of the microstructure on the activity. The effect of composition was also studied for the columnar samples. The as-prepared Pt-Cu thin films showed significant activity only at temperatures higher than 100 °C. Dealloying permitted an increase in the activity to achieve near room-temperature activity. The dealloyed closed-porous He-deposited sample was the most active, being able to convert as much as 13.15 LH2·min−1 gPt−1 at 70 °C (Ea = 1 kJ mol−1). This sample was preferentially dealloyed on the surface, yielding an almost pure Pt shell (96% at. Pt) and a Cu-depleted interior (71% at. Pt). This compositional inhomogeneity enabled the sample to achieve enhanced activity compared to the Ar-deposited columnar sample (with similar initial composition, but uniformly dealloyed), probably due to the compressive surface lattice strain. The dealloyed closed-porous He-deposited sample was shown to be durable over five cycles.






Noviembre, 2018 · DOI: 10.1016/j.apcatb.2018.04.064


Materiales Ópticos Multifuncionales

Highly Efficient and Environmentally Stable Flexible Color Converters Based on Confined CH3NH3PbBr3 Nanocrystals

Rubino, A; Anaya, M; Galisteo-Lopez, JF; Rojas, TC; Calvo, ME; Miguez, H
ACS Applied Materials & Interfaces, 10 (2018) 38334-38340
DOI: 10.1021/acsami.8b11706

Abstract

In this work, we demonstrate a synthetic route to attain methylammonium lead bromide (CH3NH3PbBr3) perovskite nanocrystals (nc-MAPbBr(3), 1.5 nm < size < 3 nm) and provide them with functionality as highly efficient flexible, transparent, environmentally stable, and adaptable color converting films. We use nanoparticle metal oxide (MOx) thin films as porous scaffolds of controlled nanopores size distribution to synthesize nc-MAPbBr(3) through the infiltration of perovskite liquid precursors. We find that the control over the reaction volume imposed by the nanoporous scaffold gives rise to a strict control of the nanocrystal size, which allows us to observe well-defined quantum confinement effects on the photo-emission, being the luminescence maximum tunable with precision between lambda = 530 nm (green) and lambda = 490 nm (blue). This hybrid nc-MAPbBr(3)/MOx structure presents high mechanical stability and permits subsequent infiltration with an elastomer to achieve a self-standing flexible film, which not only maintains the photo-emission efficiency of the nc-MAPbBr(3) unaltered but also prevents their environmental degradation. Applications as adaptable color-converting layers for light-emitting devices are envisaged and demonstrated.






Noviembre, 2018 · DOI: 10.1021/acsami.8b11706


Materiales de Diseño para la Energía y Medioambiente

Behavior of High-Strength Polypropylene Fiber-Reinforced Self-Compacting Concrete Exposed to High Temperatures

Rios, JD; Cifuentes, H; Leiva, C; Garcia, C; Alba, MD
Journal of Materials in Civil Engineering, 30 (2018) 04018271
DOI: 10.1061/(ASCE)MT.1943-5533.0002491

Abstract

In this study we analyzed the use of high-performance structural concrete reinforced with polypropylene fibers in applications requiring long exposure times to high temperatures, such as thermal energy storage systems. We analyzed the behavior of the concrete at different temperatures (hot tests: 100 degrees C, 300 degrees C, 500 degrees C and 700 degrees C), cooled-down states (cold tests) and exposure times (6, 24, and 48h). We also experimentally determined the thermogravimetric analysis, fracture behavior, compressive strength, Young's modulus, and tensile strength of concrete. Subsequently, we performed a comprehensive analysis of the thermal and mechanical behavior of high-performance concrete under different thermal conditions. We applied longer exposure times to broaden the available results on the behavior of high-performance fiber-reinforced concrete when subjected to high temperatures. Results show that, once thermal and moisture equilibriums are reached, exposure time does not have any influence on mechanical properties. They also provide useful information about the influence of high temperatures on the different parameters of fiber-reinforced concrete and its application for thermal energy storage structures.






Noviembre, 2018 · DOI: 10.1061/(ASCE)MT.1943-5533.0002491


Nanotecnología en Superficies y Plasma

The Role of Surface Recombination on the Performance of Perovskite Solar Cells: Effect of Morphology and Crystalline Phase of TiO2 Contact

Idigoras, J; Contreras-Bernal, L; Cave, JM; Courtier, NE; Barranco, A; Borras, A; Sanchez-Valencia, JR; Anta, JA; Walker, AB
Advanced Materials Interfaces, 5 (2018) art. 1801076
DOI: 10.1002/admi.201801076

Abstract

Herein, the preparation of 1D TiO2 nanocolumnar films grown by plasma-enhanced chemical vapor deposition is reported as the electron selective layer (ESL) for perovskite solar devices. The impact of the ESL architecture (1D and 3D morphologies) and the nanocrystalline phase (anatase and amorphous) is analyzed. For anatase structures, similar power conversion efficiencies are achieved using an ESL either the 1D nanocolumns or the classical 3D nanoparticle film. However, lower power conversion efficiencies and different optoelectronic properties are found for perovskite devices based on amorphous 1D films. The use of amorphous TiO2 as electron selective contact produces a bump in the reverse scan of the current-voltage curve as well as an additional electronic signal, detected by impedance spectroscopy measurements. The dependence of this additional signal on the optical excitation wavelength used in the IS experiments suggests that it stems from an interfacial process. Calculations using a drift-diffusion model which explicitly considers the selective contacts reproduces qualitatively the main features observed experimentally. These results demonstrate that for a solar cell in which the contact is working properly the open-circuit photovoltage is mainly determined by bulk recombination, whereas the introduction of a "bad contact" shifts the balance to surface recombination.






Noviembre, 2018 · DOI: 10.1002/admi.201801076


Nanotecnología en Superficies y Plasma

Influence of irrigation conditions in the germination of plasma treated Nasturtium seeds

Molina, R; Lopez-Santos, C; Gomez-Ramirez, A; Vilchez, A; Espinos, JP; Gonzalez-Elipe, AR
Scientific Reports, 8 (2018) art. 16442
DOI: 10.1038/s41598-018-34801-0

Abstract

Plasma treatments had emerged as a useful technique to improve seed germination. In this work we investigate the influence of different irrigation conditions and plasma treatments on the germination of nasturtium seeds. During plasma treatment, seeds experience a progressive weight loss as a function of treatment time that has been associated to water release, a process that is more pronounced after longer plasma treatment times. Seeds treated for short times (<30 s) are able to germinate more efficiently than untreated specimen under hydric stress (drought conditions), while plasma treatments for longer times (up to 300 s) impaired germination independently on irrigation conditions. Characterization analysis of plasma treated seeds by FTIR-ATR, SEM/EDX and XPS showed that plasma treatment affected the chemical state of pericarp while, simultaneously, induced a considerable increase in the seeds water uptake capacity. The decrease in germination efficiency found after plasma treatment for long times, or for short times under optimum irrigation conditions, has been attributed to that the excess of water accumulated in the pericarp hampers the diffusion up to the embryo of other agents like oxygen which are deemed essential for germination.






Noviembre, 2018 · DOI: 10.1038/s41598-018-34801-0


Materiales Ópticos Multifuncionales

High voltage vacuum-deposited CH3NH3PbI3–CH3NH3PbI3 tandem solar cells

Avila, J; Momblona, C; Boix, P; Sessolo, M; Anaya, M; Lozano, G; Vandewal, K; Miguez, H; Bolink, HJ
Energy & Environmental Science, 11 (2018) 3292-3297
DOI: 10.1039/c8ee01936c

Abstract

The recent success of perovskite solar cells is based on two solid pillars: the rapid progress of their power conversion efficiency and their flexibility in terms of optoelectrical properties and processing methods. That versatility makes these devices ideal candidates for multi-junction photovoltaics. We report an optically optimized double junction CH3NH3PbI3-CH3NH3PbI3 tandem solar cell where the matched short-circuit current is maximized while parasitic absorption is minimized. The use of an additive vacuum-deposition protocol allows us to reproduce calculated stack designs, which comprise several charge selective materials that ensure appropriate band alignment and charge recombination. This rationalized configuration yields an unprecedented open circuit voltage of 2.30 V. Furthermore, this tandem solar cell features efficiencies larger than 18%, higher than those of the individual sub-cells. Low photo-current values allow reducing the losses associated to the series resistance of transparent contacts, which opens the door to the realization of efficient large area modules.






Noviembre, 2018 · DOI: 10.1039/c8ee01936c


Reactividad de Sólidos

Scalable synthesis of potential solar cell absorber Cu2SnS3 (CTS) from nanoprecursors

Hegedus, M; Balaz, M; Tesinsky, M; Sayagues, MJ; Siffalovic, P; Krulakova, M; Kanuchova, M; Briancin, J; Fabian, M; Balaz, P
Journal of Alloys and Compounds, 768 (2018) 1006-1015
DOI: 10.1016/j.jallcom.2018.07.284

Abstract

The present paper demonstrates an easy and scalable mechanochemical synthesis of ternary sulfide Cu2SnS3 (CTS) as a promising solar cell absorber. For the synthesis, pre-milled nanoparticles of CuS and SnS were used. The pure CTS phase was readily obtained after 60 min of milling in a laboratory planetary ball mill and 240 min in an industrial eccentric vibration industrial mill, respectively. The reaction progress of laboratory scale synthesis was studied by the quantitative Rietveld analysis. The reaction speed reaches its maximum at 4.6 min and the reaction is completed at approximately 60 min, according to the fitted data. The products of the syntheses were further characterized by X-ray powder diffractometry, Raman spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis spectroscopy. The results revealed formation of near-stoichiometric CTS nanoparticles with tetragonal I-42m symmetry. An average crystallites size of approximately 10-15 nm was determined for CTS phase. The SEM images support quintessential polydisperse character of the powders obtained by ball-milling approach. The materials seem to be suitable for photovoltaic applications with the band-gap energies of approximately 1.16-1.19 eV.






Noviembre, 2018 · DOI: 10.1016/j.jallcom.2018.07.284


Tribología y Protección de Superficies

High-temperature oxidation of CrAlYN coatings: Implications of the presence of Y and type of steel

Rojas, TC; Dominguez-Meister, S; Brizuela, M; Sanchez-Lopez, JC
Surface & Coatings Technology, 354 (2018) 203-2013
DOI: 10.1016/j.surfcoat.2018.09.020

Abstract

Nanolayered CrAIN and CrAIYN/CrAIN (average contents of Al approximate to 25 at.% and Y approximate to 1.6 at. %) coatings are deposited on M2 and 316 steel substrates and heated to 1000 degrees C in air for 2 h to study their oxidation mechanism, the thermal stability and the reactive element (RE) effect of yttrium. CrAIN on M2 develops a Cr2O3/Al2O3 passivation layer that preserves in high degree the fcc-CrAIN structure however iron ions leave the substrate and travel to the surface along the column boundaries. The CrAIYN/CrAIN coatings deposited on steels are not stable at 1000 degrees C, and the initial fcc-CrAIN phase is partially transformed to hcp-Al(O)N and Cr-Fe phases (M2) and Cr2N and Al2O3 (316). The addition of Y changes the predominant scale growth direction. Inward oxygen diffusion becomes dominant but a reduction of the oxide scale thickness as compared to CrAIN is not observed. The advanced microstructural analysis made by transmission electron microscopy combined with electron energy loss spectroscopy determined that yttrium migrates mainly to the oxide scale (forming mixed oxides with substrate elements - V and Mo, either as dispersed particles or segregated at the grain boundaries) in M2, and to the oxide interface and column boundaries (forming Al-Y oxides and YN, respectively) in 316 steel. The benefits of addition of Y in improving the oxidation resistance are discussed comparatively with literature data. The RE effect of yttrium is thus observed to be dependent on the substrate, film architecture and composition.






Octubre, 2018 · DOI: 10.1016/j.surfcoat.2018.09.020


Reactividad de Sólidos

Study of the thermal decomposition of historical metal threads

Perez-Rodriguez, JL; Perez-Maqueda, R; Franquelo, ML; Duran, A
Journal of Thermal Analysis and Calorimetry, 134 (2018) 15-22
DOI: 10.1007/s10973-017-6924-x

Abstract

In this work, it is reported that thermal analysis techniques such as differential thermal analysis and thermogravimetric analysis are very useful for evaluating metals threads and fibres used in the manufacture of historical artifacts. Thermal analysis has been used to characterize the silk, cotton and linen employed as supports and the copper, silver and aluminium as the metallic components in the studied threads. Other organic compounds, mainly added for the conservation of the threads, have also been characterized.






Octubre, 2018 · DOI: 10.1007/s10973-017-6924-x


Fotocatálisis Heterogénea: Aplicaciones

Photocatalytic H2 production from glycerol aqueous solutions over fluorinated Pt-TiO2 with high {001} facet exposure

V. Vaiano; M.A. Lara; G. Iervolino; M. Matarangolo; J.A. Navío; M.C. Hidalgo
Journal of Photochemistry and Photobiology A-Chemistry, 365 (2018) 52-59
DOI: 10.1016/j.jphotochem.2018.07.032

Abstract

An optimized fluorinated TiO2 catalyst with high {001} facet exposure loaded with platinum (TiO2-PtFAC) was tested in the photocatalytic hydrogen production from glycerol solution under UV light irradiation. The samples were synthesized by direct hydrothermal treatment starting from two different types of precursors that are titanium tetraisopropoxide (I) or titanium butoxide (B), while platinisation was performed by photodeposition method. The obtained catalysts were characterised by different techniques (XRD, FESEM, TEM, BET, UV–vis DRS, XRF and XPS) and the results evidenced that anatase is the only crystalline phase present in all TiO2 samples. The morphology of the samples was seen as rectangular platelets particles where Pt particles were was observed all over the surface. The presence of Pt and F in the platinised samples was also confirmed by XRF and XPS analysis. The photocatalytic results have shown that the presence of Pt on TiO2{001}facet surface remarkably enhanced the hydrogen production from aqueous solution at 5 wt % of glycerol. Comparing the results obtained from the photocatalysts prepared by the two different precursors, it was found that the best performances in terms of H2 production was achieved with TiO2-PtFAC(I) (about 13 mmol L−1 after 4 h of irradiation time), while the H2 production was lower for TiO2-PtFAC(B) (about 9 mmol L−1 after 4 h of irradiation time). The effect of the operating conditions using TiO2-PtFAC(I) evidenced that the highest H2 production was obtained with a photocatalyst dosage equal to 1.5 g L−1, initial glycerol concentration at 5 wt% and a pH value equal to 7. Finally, a photocatalytic test was also performed on glycerol solution prepared with a real water matrix. Despite the presence of ions scavengers (chlorides and carbonates) in solution, TiO2-PtFAC(I) was able to reach a photocatalytic H2production of about 6 mmol L−1 after 4 h of UV light irradiation.






Octubre, 2018 · DOI: 10.1016/j.jphotochem.2018.07.032


Reactividad de Sólidos

Isosymmetric structural phase transition of the orthorhombic lanthanum gallate structure as a function of temperature determined by Rietveld analysis

Tang, Y. Q.; Lopez-Cartes, C.; Aviles, M. A.; Cordoba, J. M.
CRYSTENGCOMM, 20 (2018) 5562-5569
DOI: 10.1039/c8ce00726h

Abstract

High energy planetary ball milling has been used to synthesize pseudo-cubic highly-pure LaGaO3 in one hour from its oxide components in an air atmosphere. Calcination at different temperatures led to the crystallization of lanthanum gallate in an orthorhombic structure with its local lanthanum coordination number environment changing from 12 to 7 when the temperature was increased. This change was attributed to the thermal expansion of the Ga-O bonds that varied non-monotonically inducing GaO6 tilting. Rietveld analysis, Raman spectroscopy, and transmission electron microscopy were used to elucidate the LaGaO3 structures at different temperatures.






Octubre, 2018 · DOI: 10.1039/c8ce00726h


Reactividad de Sólidos

Optimizing the homogenization technique for graphene nanoplatelet/yttria tetragonal zirconia composites: Influence on the microstructure and the electrical conductivity

Lopez-Pernia, C; Munoz-Ferreiro, C; Gonzalez-Orellana, C; Morales-Rodriguez, A; Gallardo-Lopez, A; Poyato, R
Journal of Alloys and Compounds, 767 (2018) 994-1002
DOI: 10.1016/j.jallcom.2018.07.199

Abstract

3 mol% yttria tetragonal zirconia polycrystalline (3YTZP) ceramic composite powders with 10 vol% nominal content of graphene nanoplatelets (GNPs) were prepared using four different homogenization routines: dispersion of the powder mixture by ultrasonication in isopropyl alcohol, homogenization in a high-energy planetary ball mill in wet or dry conditions after ultrasonication, and milling of the powders in a high-energy planetary ball mill in dry conditions. A significant effect of the homogenization routine on the powders particle size distribution was revealed by laser granulometry and Raman spectroscopy. Highly densified composites were obtained after spark plasma sintering (SPS) and remarkable differences on the GNP size, shape and distribution throughout the ceramic matrix and also in the electrical conductivity were observed in the four different composites. The composite with the best performance in terms of electrical conductivity was the one prepared after planetary ball milling of the powders in dry conditions as a consequence of the reduced dimensions of the GNPs and their excellent distribution throughout the ceramic matrix. 






Octubre, 2018 · DOI: 10.1016/j.jallcom.2018.07.199


Reactividad de Sólidos

The role of carbon nanotubes on the stability of tetragonal zirconia polycrystals

Morales-Rodriguez, A; Poyato, R; Gutierrez-Mora, F; Munoz, A; Gallardo-Lopez, A
Ceramics International, 44 (2018) 17716-17723
DOI: 10.1016/j.ceramint.2018.06.238

Abstract

The effect of single walled carbon nanotubes (SWNT) at zirconia grain boundaries on the stability of a tetragonal zirconia polycrystalline matrix has been explored in as-sintered composites and after low temperature hydro thermal degradation (LTD) experiments. For this purpose, highly-dense 3 mol% Y2O3-doped tetragonal zirconia polycrystalline (3YTZP) ceramics and SWNT/3YTZP composites were prepared by spark plasma sintering (SPS). Quantitative X-ray diffraction analysis and microstructural observations point out that an increasing amount of well-dispersed SWNT bundles surrounding zirconia grains decreases the metastable tetragonal phase retention in the ceramic matrix after sintering. In contrast, the tetragonal ceramic grains in composites with SWNTs are less sensitive to the presence of water, i.e. to undergo a martensitic transformation under LTD conditions, than monolithic 3YTZP ceramics. The SWNT incorporation diminishes micro-cracking due to tetragonal to monoclinic ZrO2 phase transformation in the composites.






Octubre, 2018 · DOI: 10.1016/j.ceramint.2018.06.238


Reactividad de Sólidos

Mesoporous Silica by Solution-Combustion Synthesis Followed by Etching

Salehtash, F; Jalaly, M; Motejadded Emrooz, HB; Gotor, FJ; Sayagués, MJ
International Journal of Self-Propagating High-Temperature Synthesis, 27 (2018) 221–227
DOI: 10.3103/S1061386218040064

Abstract

Mesoporous silica was synthesized through the solution-combustion process followed by etching with aqueous solution of sodium dodecyl sulfate (SDS). Combustion products were characterized by XRD, FTIR, SEM, TEM, HRTEM, and BET analysis. After etching, the specific surface, mean pore size, and volume of porous space in silica increased up to 390 m(2)/g, 15 nm, and 1.6 cm(3)/g, respectively. The synthesized mesoporous silica exhibited good performance in the tests on elimination of methylene blue from aqueous solution.






Octubre, 2018 · DOI: 10.3103/S1061386218040064


Propiedades mecánicas, modelización y caracterización de cerámicos avanzados

Grain-boundary diffusion coefficient in alpha-Al2O3 from spark plasma sintering tests: Evidence of collective motion of charge disconnections

Tamura, Y; Zapata-Solvas, E; Moshtaghioun, BM; Gomez-Garcia, D; Dominguez-Rodriguez, A
Ceramics International, 44 (2018) 19044-19048
DOI: 10.1016/j.ceramint.2018.07.073

Abstract

The sintering of fine-grained a-alumina by spark plasma sintering (SPS) was performed to study grain growth under SPS conditions. Grain growth is found to be extensive at relative densities above 95%. A grain growth versus dwell time analysis during SPS allows for the determination of the grain-boundary diffusion coefficient. This study shows that the remarkable enhancement of grain-boundary diffusion derived from a previous analysis could be a consequence of the presence of the recently discovered "disconnections" at the grain boundaries of alpha-alumina. Their presence, together with their electric charge and the external electric field at the boundaries, are the key ingredients for a violation of the typical grain growth kinetic law. When they are introduced appropriately, an updated value of the grain-boundary diffusion coefficient is achieved. A comparison with other values reported previously in the literature through other techniques and a critical analysis are also carried out.






Octubre, 2018 · DOI: 10.1016/j.ceramint.2018.07.073


Materiales Avanzados

Biomass fly ash and aluminium industry slags-based geopolymers

Perez-Villarejo, L; Bonet-Martinez, E; Eliche-Quesada, D; Sanchez-Soto, PJ; Rincon-Lopez, JM; Castro-Galiano, E
Materials Letters, 229 (2018) 6-12
DOI: 10.1016/j.matlet.2018.06.100

Abstract

Geopolymers are a new class of non-Portland cements produced using an alumino-silicate material and an activating solution, which is mainly composed of sodium or potassium and waterglass to be subsequently cured at relatively low temperatures. Those can be formulated by adding natural minerals, waste and/or industrial by-products. The study investigates the microstructural properties of geopolymers synthesized from metakaolin (MK) and the admixture of fly ash (FBA) and aluminium industry slags (AIS) at different ages of curing. Five different geopolymer compositions were prepared and characterized by XRD, ATR-FTIR and SEM/EDS. The study revealed that geopolymeric gels are identified, which show mainly glassy microstructures, in agreement with the X-ray amorphous diffraction patterns, broad FTIR features and confirmed by SEM/EDS, with promising results prior to an industrial scale.






Octubre, 2018 · DOI: 10.1016/j.matlet.2018.06.100


Spanish and Portuguese Gilding Threads: Characterization Using Microscopic Techniques

Perez-Rodriguez, JL; Albardonedo, A; Robador, MD; Duran, A
Microscopy and Microanalysis, 24 (2018) 574-590
DOI: 10.1017/S1431927618015167

Abstract

Gilding threads collected from Spanish and Portuguese palaces and from the embroideries and adornments of sculptures of the Virgin and Christ that form part of Sevillian Holy Week were analyzed and compared (20 artifacts were evaluated). The study covered a broad time period with examples from the 13th to 14th centuries, 18th to 20th centuries, and also including modern embroideries. A combination of scanning electron microscopy and energy-dispersive X-ray spectroscopy was used. The knowledge of the layered structures of the threads has provided very valuable information regarding the manufacturing techniques. The different metal threads found in the embroidery studied consisted of gold, silver, copper, and alloys of these metals and aluminium. The fabrication procedures often differed in the different workshops and changed with time. In the modern embroideries, a decrease of precious metal concentration was detected. The threads were wound around a core of silk threads.






Octubre, 2018 · DOI: 10.1017/S1431927618015167


Materiales Avanzados

Manufacture of sustainable clay ceramic composite with composition SiO2-Al2O3-CaO-K2O materials valuing biomass ash from olive pomace

Bonet-Martinez, E; Perez-Villarejo, L; Eliche-Quesada, D; Sanchez-Soto, PJ; Carrasco-Hurtado, B; Castro-Galiano, E
Materials Letters, 229 (2018) 21-25
DOI: 10.1016/j.matlet.2018.06.105

Abstract

Fly ash is a biomass combustion by-product produced by dragging ash from the base of the furnace. Disposing of ash is a growing economic and environmental burden. Based on physical and chemical properties, fly ash could be used in the manufacture of construction materials. This paper investigates the influence of biomass fly ash from olive pomace as additive to manufacture of clay ceramic composite materials. Fired clay brick at 950 degrees C were prepared containing between 0 and 25 wt% fly ash. Final products are studied by water absorption, bulk density, loss of ignition, linear shrinkage, compressive strength and physisorption N-2. The results reveal that the porosity of the materials increases with the level of fly ash replacement (10% up to 25 wt%) resulting in to increased water absorption and decreased compressive strength. Fired clay brick developed in this study can be used for construction materials based on criteria of the current regulations. 






Octubre, 2018 · DOI: 10.1016/j.matlet.2018.06.105


Química de Superficies y Catálisis - Reactividad de Sólidos

A direct in situ observation of water-enhanced proton conductivity of Eu-doped ZrO2: Effect on WGS reaction

Garcia-Moncada, N; Bobadilla, LF; Poyato, R; Lopez-Cartes, C; Romero-Sarria, F; Centeno, MA; Odriozola, JA
Applied Catalysis B-Environmental, 231 (2018) 343-356
DOI: 10.1016/j.apcatb.2018.03.001

Abstract

Eu-doped ZrO2 solid solutions have been synthesized in order to prepare proton conductors as water-enhancer additives for the WGS reaction. Elemental characterization has been carried out revealing homogeneous dopant distribution resulting in fluorite-type solid solutions for Eu2O3 contents up to similar to 9 mol.%. Representative samples of the Eu-doped ZrO2 series have been analysed by Impedance Spectroscopy (IS) in inert, oxygen and wet conditions. The solid solution with 5 mol.% of Eu2O3 has presented the highest conductivity values for all tested conditions indicating an optimal amount of dopant. Moreover, the presence of vapour pressure results in an increment of the conductivity at temperatures lower than 300 degrees C, meanwhile at higher temperatures the conductivity is the same than that in inert conditions. To elucidate these results, in situ DRIFTS studies were carried out. These experiments evidenced the existence of water dissociation at oxygen vacancies (band at 3724 cm(-1)) as well as the presence of physisorbed water at temperatures up to similar to 300 degrees C where the band at 5248 cm(-1) characteristic of these species disappeared. These results points to a layer model where the physisorbed water interacts with surface hydroxyls generated by dissociated water that improves the proton conductivity through Grotthuss' mechanism in the RT-300 degrees C temperature range. These samples were successfully tested in WGS reaction as additive to a typical Pt-based catalyst. The presence of the mixed oxide reveals an increase of the catalyst' activity assisted by the proton conductor, since improves the water activation step.






Septiembre, 2018 · DOI: 10.1016/j.apcatb.2018.03.001


Materiales de Diseño para la Energía y Medioambiente

Performance improvement in olive stone's combustion from a previous carbonization transformation

Gomez-Martin, A; Chacartegui, R; Ramirez-Rico, J; Martinez-Fernandez, J
Fuel, 228 (2018) 254-262
DOI: 10.1016/j.fuel.2018.04.127

Abstract

Under the framework of circular economy, agricultural wastes are an interesting carbon-based feedstock for thermal energy and power generation. Their use could extend the availability of biomass-based fuel and, at the same time, would reduce negative environmental effects. However, depending on the residues' characteristics, their direct combustion in boilers presents some challenges which could be overcome with a carbonization pretreatment. In this paper, the main mechanisms of thermochemical transformation of an abundant agricultural waste, olive stone, into biochar products via slow carbonization are analyzed, with emphasis on the effect of peak carbonization temperature. Thermogravimetric and differential scanning calorimetry analysis are used to evaluate the performance of the resulting biochars compared to raw olive stone in combustion processes and to assess the correlation between the peak carbonization temperature and compositional and fuel properties. Results show that with a prior treatment up to an optimum temperature of 800 degrees C the energy density is increased up to three times compared to the raw material. These findings suggest that carbonization of olive stones reduces the barriers to their direct use in current biomass boiler technology.






Septiembre, 2018 · DOI: 10.1016/j.fuel.2018.04.127


Reactividad de Sólidos

Mechanosynthesis of Sr1-xLaxTiO3 anodes for SOFCs: Structure and electrical conductivity

Sayagues, MJ; Gotor, J; Pueyo, M; Poyato, R; Garcia-Garcia, FJ
Journal of Alloys and Compounds, 763 (2018) 679-686
DOI: 10.1016/j.jallcom.2018.05.243

Abstract

Sr1-xLaxTiO3 (SLT; 0 <= x <= 0.5) powder samples were synthesised at room temperature by a mechanochemical method from SrO, La2O3 and TiO2 mixtures in 90 min. The obtained SLT samples as potential anode materials in solid oxide fuel cells (SOFCs) were investigated. The microstructure, electrical conductivity and chemical compatibility with yttria-stabilised zirconia (YSZ) were studied. The powder samples had a nanometric character after milling. After a subsequently heating at 900 degrees C, the particle size slightly increased, but still remained nanometric. At this high temperature, a good chemical compatibility with YSZ was found. The x = 0.2 sample gave the best electrical conductivity values, i.e. 0.23 W cm(-2). These features make such as-obtained samples good candidates to be used as anodes in SOFCs.






Septiembre, 2018 · DOI: 10.1016/j.jallcom.2018.05.243


Propiedades mecánicas, modelización y caracterización de cerámicos avanzados

Graphene or carbon nanofiber-reinforced zirconia composites: Are they really worthwhile for structural applications?

Cano-Crespo, R; Moshtaghioun, BM; Gomez-Garcia, D; Moreno, R; Dominguez-Rodriguez, A
Journal of the European Ceramic Society, 38 (2018) 3994-4002
DOI: 10.1016/j.jeurceramsoc.2018.04.045

Abstract

The use of allotropic phases of carbon (i.e. nanotubes, graphene or carbon nanofibers) as second phases to design ceramic composites is a hot topic at present. Researchers try to provide a remarkable improvement of the parent ceramic assuming that some of the outstanding mechanical properties of these phases migrate to the resultant composite. This reasonable idea has been questioned severely in the case of nanotubes addition but there is not any analysis for the other two phases cited previously. To elucidate this question, zirconia was selected as a model ceramic. This paper reports the mechanical properties of zirconia composites reinforced either with graphene or carbon nanofibers, with special emphasis on the high-temperature plasticity.






Septiembre, 2018 · DOI: 10.1016/j.jeurceramsoc.2018.04.045


Reactividad de Sólidos

Nanostructured vanadium carbonitride prepared by combustion synthesis during mechanical milling

Jalaly, M; Gotor, FJ; Sayagues, MJ
Journal of Alloys and Compounds, 763 (2018) 18-24
DOI: 10.1016/j.jallcom.2018.05.352

Abstract

Vanadium carbonitride (VCN) nanoparticles were synthesized by a mechanically induced magnesiothermic combustion in a Mg/V2O5/C3H6N6 system. Initial materials ignited after a short milling time of 6 min. Various characterizations such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscopy (HRTEM) and elemental mapping confirmed that the product of the combustion was a mixed carbonitride. In this process, magnesium reduces vanadium oxide to generate elemental V and a great amount of heat. Melamine decomposes due to the temperature rise, and its decomposed species form the carbonitride compound. The chemical composition of the synthesized product was estimated to be VC0.26N0.36.






Septiembre, 2018 · DOI: 10.1016/j.jallcom.2018.05.352


Química de Superficies y Catálisis

Pt/CePO4 catalysts for the WGS reaction: influence of the water-supplier role of the support on the catalytic performance

Navarro-Jaen, S; Centeno, MA; Laguna, OH; Odriozola, JA
Journal of Materials Chemistry A, 6 (2018) 17001-17010
DOI: 10.1039/c8ta04603d

Abstract

For Pt catalysts which have demonstrated great activity for the WGS reaction, the activation of water is described as the rate-limiting step. Such limitation could be overcome through the design of supports able to supply water. In this study, the hexagonal and monoclinic phases of CePO4 have been evaluated as supports for Pt WGS catalysts. The hexagonal structure presents channels containing water, absent in the monoclinic structure. The presence of these channels in the hexagonal phase increases the interaction with the water molecules, leading to an enhancement of the WGS catalytic performance. DRIFTS results showed that dissociation of water does not occur on these supports, while calculated apparent activation energies present values similar to those reported in the literature for the dissociation of water in Pt (111). These results suggest that cerium phosphates act as water suppliers, increasing the number of available species to be dissociated on the Pt surface.






Septiembre, 2018 · DOI: 10.1039/c8ta04603d


Materiales de Diseño para la Energía y Medioambiente

A comprehensive and in-depth analysis of the synthesis of advanced adsorbent materials

Osuna, FJ; Cota, A; Pavon, E; Alba, MD
Journal of Cleaner Production, 194 (2018) 665-672
DOI: 10.1016/j.jclepro.2018.05.179

Abstract

Na-Mica-4, a synthetic fluorophlogopite, is an attractive adsorbent. However, the synthesis at large scale demands an economically prized, feasible scalable and sustainable synthesis method, which requires a deep knowledge of the influence of each synthesis step. A set of Na-Mica-4 were synthesized by methods that had one synthesis parameter as variable. The purity, crystallinity and heteroatoms distribution were analysed thorough X-ray diffraction and nuclear magnetic resonance. The results shed a light on the main factors for the design of the final product and indicated that an environmental friendship synthesis could be possible. 






Septiembre, 2018 · DOI: 10.1016/j.jclepro.2018.05.179


Materiales Ópticos Multifuncionales

Absorption enhancement in methylammonium lead iodide perovskite solar cells with embedded arrays of dielectric particles

Jimenez-Solano, A; Carretero-Palacios, S; Miguez, H
Optics Express, 26 (2018) A865-A878
DOI: 10.1364/OE.26.00A865

Abstract

In the field of hybrid organic-inorganic perovskite based photovoltaics, there is a growing interest in the exploration of novel and smarter ways to improve the cells light harvesting efficiency at targeted wavelength ranges within the minimum volume possible, as well as in the development of colored and/or semitransparent devices that could pave the way both to their architectonic integration and to their use in the flowering field of tandem solar cells. The work herein presented targets these different goals by means of the theoretical optimization of the optical design of standard opaque and semitransparent perovskite solar cells. In order to do so, we focus on the effect of harmless, compatible and commercially available dielectric inclusions within the absorbing material, methylammonium lead iodide (MAPI). Following a gradual and systematic process of analysis, we are capable of identifying the appearance of collective and hybrid (both localized and ex tended) photonic resonances which allow to significantly improve light harvesting and thus the overall efficiency of the standard device by above 10% with respect to the reference value while keeping the semiconductor film thickness to a minimum. We believe our results will be particularly relevant in the promising field of perovskite solar cell based tandem photovoltaic devices, which has posed new challenges to the solar energy community in order to maximize the performance of semitransparent cells, but also for applications focusing on architectonic integration. 






Septiembre, 2018 · DOI: 10.1364/OE.26.00A865

 

 

 

 

 

icms