Menú secundario

Artículos SCI



2020


Bimodal Nd-Doped LuVO4 Nanoprobes Functionalized with Polyacrilic Acid for X-Ray Computed Tomography and NIR Luminescent Imaging


Nuñez, NO; Cusso, F; Cantelar, E; Martin-Gracia, B; de la Fuente, JM; Corral, A; Balcerzyk, M; Ocaña, M
Nanomaterials, 10 (2020) 149
Materiales Coloidales

ABSTRACT

Uniform Nd3+-doped LuVO4 nanophosphors have been synthesized for the first time in literature by using a poliol-based method at 120 degrees C from Nd3+ and vanadate precursors. After optimizing the Nd doping level, these phosphors present intense luminescence in the near-infrared biological windows. The X-ray attenuation capacity of the optimum nanophosphor has been found to be higher than that of a commercial X-ray computed tomography contrast agent. After surface coating with polyacrylic acid, such nanoparticles present high colloidal stability in physiological pH medium and high cell viability. Because of these properties, the developed Nd3+-doped LuVO4 nanoparticles have potential applications as a bimodal probe for NIR luminescent bioimaging and X-ray computed tomography.


Enero, 2020 | DOI: 10.3390/nano10010149

Tribomechanical properties of hard Cr-doped DLC coatings deposited by low-frequency HiPIMS


Santiago, JA; Fernandez-Martinez, I; Sanchez-Lopez, JC; Rojas, TC; Wennberg, A; Bellido-Gonzalez, V; Molina-Aldareguia, JM; Monclus, MA; Gonzalez-Arrabal, R
Surface & Coatings Technology, 382 (2020) 124899
Tribología y Protección de Superficies

ABSTRACT

Cr-doped diamond-like carbon (Cr-DLC) films with Cr contents ranging from 3 up to 20 at. % were synthesised in a codeposition process with HiPIMS (Cr deposition) and DC-pulsed technology (C deposition). The application of HiPIMS at low frequencies was observed to significantly enhance the energy density during the Cr plasma discharge due to the interaction of Cr-C species. The higher energy bombardment at low HiPIMS frequencies allowed doping with Cr the DLC structure avoiding the graphitization of the carbon structure. EELS spectroscopy was used to evaluate sp(3) content and Raman was used for sp(2) structural characterization of the films. Enhanced mechanical properties (hardness up to 30 GPa) were observed with nanoindentation for Cr-doped DLC at low frequencies. High temperature nanoindentation tests were also performed from room temperature to 425 degrees C in order to evaluate the evolution of hardness and Young Modulus with temperature. The results showed that the mechanical properties at high temperature mainly depend on the initial sp(3)-sp(2) structure. Tribological tests were carried out in air from room temperature to 250 degrees C. Cr-doped DLC coatings deposited by low-frequency HiPIMS showed lower friction and wear compared to undoped DLC.


Enero, 2020 | DOI: 10.1016/j.surfcoat.2019.124899

Dipole reorientation and local density of optical states influence the emission of light-emitting electrochemical cells


Jimenez-Solano, Alberto; Martinez-Sarti, Laura; Pertegas, Antonio; Lozano, Gabriel; Bolink, Henk J; Miguez, Hernan
Physical Chemistry Chemical Physics, 22 (2020) 92-96
Materiales Ópticos Multifuncionales

ABSTRACT

Herein, we analyze the temporal evolution of the electroluminescence of light-emitting electrochemical cells (LECs), a thin-film light-emitting device, in order to maximize the luminous power radiated by these devices. A careful analysis of the spectral and angular distribution of the emission of LECs fabricated under the same experimental conditions allows describing the dynamics of the spatial region from which LECs emit, i.e. the generation zone, as bias is applied. This effect is mediated by dipole reorientation within such an emissive region and its optical environment, since its spatial drift yields a different interplay between the intrinsic emission of the emitters and the local density of optical states of the system. Our results demonstrate that engineering the optical environment in thin-film light-emitting devices is key to maximize their brightness.


Enero, 2020 | DOI: 10.1039/c9cp05505c

Effect of synthesis pH on the physicochemical properties of a synthesized Bi2WO6 and the type of substrate chosen, in assessing its photo-catalytic activities


Jaramillo-Páez, C.; Navío, J.A.; Hidalgo, M.C.
Arabian Journal of Chemistry, 13 (2020) 431-443
Fotocatálisis Heterogénea: Aplicaciones

ABSTRACT

Crystalline orthorhombic Bi2WO6 powders were synthesized by a hydrothermal method from aqueous solutions of Bi(NO3)35H2O and Na2WO42H2O over a range of three selected pH values (2.0, 5.0 and 7.0), using NaOH as precipitating agent. The as-prepared catalysts were characterized by XRD, BET, FE-SEM, TEM, XPS and UV-vis spectroscopy. The effect of pH-synthesis on crystallinity,  morphologies, surface area and optical absorption properties, were investigated.
Although the pH has a marked influence on morphology, the nature of the precipitating agent (NaOH or TEA) also influences the morphology and surface structure composition, as it is observed in the present work. Three different probe molecules were used to evaluate the photocatalytic properties under two illumination conditions (UV and Visible): Methyl Orange and Rhodamine B were chosen as dye substrates and Phenol as a transparent substrate. The photo-catalytic activities are strongly dependent not only on the pH used in the synthesis but also on the nature of the chosen substrate in assessing the photo-catalytic activities. Results were compared with those obtained when using TiO2(P25, Evonik) in the same experimental conditions. The photocatalytic activity of one of the synthesised samples has been evaluated by exposing a mixture of Rhodamine B and Phenol in water, to different illumination conditions. Our results provide new evidences about the issue of whether dyes are suitable substrates to assess the activity of a photo-catalyst.


Enero, 2020 | DOI: 10.1016/j.arabjc.2017.05.014

Development of Ti(C,N)-based cermets with (Co,Fe,Ni)-based high entropy alloys as binder phase


de la Obra, AG; Sayagues, MJ; Chicardi, E; Gotor, FJ
Journal of Alloys and Compounds, 814 (2020) 152218
Reactividad de Sólidos

ABSTRACT

High entropy alloys have been proposed as novel binder phases in cemented carbides and cermets. Many aspects related to the stability of these alloys during the liquid phase sintering process are still unclear and were addressed in this work. Consolidated Ti(C,N)-based cermets using four different (Co,Fe,Ni)based high entropy alloys as the binder phase were obtained. The chosen alloys - CoCrCuFeNi, CoCrFeNiV, CoCrFeMnNi and CoFeMnNiV - were previously synthesized through mechanical alloying and a single alloyed solid solution phase with fcc structure and nanometric character was always obtained. The powdered alloys and the consolidated cermets were analyzed by X-ray diffraction, scanning electron microscopy, X-ray energy dispersive spectrometry and transmission electron microscopy. Differential thermal analysis was employed to determine the melting point of the four high entropy alloys that ranged between 1310 degrees C and 1375 degrees C. Although a high temperature of 1575 degrees C was required to obtain the highest cermet densification by pressureless sintering, porosity still remained in most of the cermets. Best densification was achieved when CoCrFeNiV was used as the binder phase. During liquid phase sintering, different compositional changes were observed in the ceramic and binder phases. A core-rim microstructure was observed in cermets containing V in the alloys (CoCrFeNiV and CoFeMnNiV), since this element was incorporated to the carbonitride structure during sintering. A slight Cr segregation was detected in cermets containing Cr, leading to CrTi-rich alloys in small binder regions. However, a great Cu segregation was produced when CoCrCuFeNi was used, and the formation of two different fcc alloys -a Cu-rich and a Cu-depleted- was observed. Finally, a loss of Mn was also evidenced in CoCrFeMnNi and CoFeMnNiV, probably due to its sublimation at the sintering temperature. 


Enero, 2020 | DOI: 10.1016/j.jallcom.2019.152218

Preparation and Characterization of Bio-Based PLA/PBAT and Cinnamon Essential Oil Polymer Fibers and Life-Cycle Assessment from Hydrolytic Degradation


Correa-Pacheco, ZN; Black-Solis, JD; Ortega-Gudino, P; Sabino-Gutierrez, MA; Benitez-Jimenez, JJ; Barajas-Cervantes, A; Bautista-Banos, S; Hurtado-Colmenares, LB
Polymers, 12 (2020) 38
Materiales de Diseño para la Energía y Medioambiente

ABSTRACT

Nowadays, the need to reduce the dependence on fuel products and to achieve a sustainable development is of special importance due to environmental concerns. Therefore, new alternatives must be sought. In this work, extruded fibers from poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) added with cinnamon essential oil (CEO) were prepared and characterized, and the hydrolytic degradation was assessed. A two-phase system was observed with spherical particles of PBAT embedded in the PLA matrix. The thermal analysis showed partial miscibility between PLA and PBAT. Mechanically, Young's modulus decreased and the elongation at break increased with the incorporation of PBAT and CEO into the blends. The variation in weight loss for the fibers was below 5% during the period of hydrolytic degradation studied with the most important changes at 37 degrees C and pH 8.50. From microscopy, the formation of cracks in the fiber surface was evidenced, especially for PLA fibers in alkaline medium at 37 degrees C. This study shows the importance of the variables that influence the performance of polyester-cinnamon essential oil-based fibers in agro-industrial applications for horticultural product preservation.


Enero, 2020 | DOI: 10.3390/polym12010038



2019


Silver effect on the tribological and antibacterial properties of a-C:Ag coatings


Dominguez-Meister, S; Rojas, TC; Frias, JE; Sanchez-Lopez, JC
Tribology International, 140 (2019) UNSP 105837
Tribología y Protección de Superficies

ABSTRACT

a-C:Ag coatings (1.2-23.4 at.% of Ag) were deposited using magnetron sputtering. Ag nanoparticles appear embedded in the carbon matrix or segregated to the column boundaries or surface. The silver doping has not promoted significant changes of the sp(2)/sp(3) ratio although a decrease of the hardness is observed (from 17 to 7 GPa). The tribological behavior did not show a clear dependence on the silver concentration in unlubricated or lubricated conditions (fetal bovinum serum) against alumina or UHMWPE balls. Ag nanoparticle dispersion enhanced the bactericide behavior as determined by the released Ag+ ion in the fluid media. There is no clear effect of friction rubbing on the released silver indicating that diffusion and top segregation are prevalent mechanisms for its dissolution.


Diciembre, 2019 | DOI: 10.1016/j.triboint.2019.06.030

3D Organic Nanofabrics: Plasma-Assisted Synthesis and Antifreezing Behavior of Superhydrophobic and Lubricant-Infused Slippery Surfaces


Alcaire, M; Lopez-Santos, C; Aparicio, FJ; Sanchez-Valencia, JR; Obrero, JM; Saghi, Z; Rico, VJ; de la Fuente, G; Gonzalez-Elipe, AR; Barranco, A; Borras, A
Langmuir, 35 (2019) 16876-16885
Nanotecnología en Superficies y Plasma

ABSTRACT

Herein, we present the development of supported organic nanofabrics formed by a conformal polymer-like interconnection of small-molecule organic nanowires and nanotrees. These organic nanostructures are fabricated by a combination of vacuum and plasma-assisted deposition techniques to generate step by step, single-crystalline organic nanowires forming one-dimensional building blocks, organic nanotrees applied as three-dimensional templates, and the polymer-like shell that produces the final fabric. The complete procedure is carried out at low temperatures and is compatible with an ample variety of substrates (polymers, metal, ceramics; either planar or in the form of meshes) yielding flexible and low solid-fraction three-dimensional nanostructures. The systematic investigation of this progressively complex organic nanomaterial delivers key clues relating their wetting, nonwetting, and anti-icing properties with their specific morphology and outer surface composition. Water contact angles higher than 150° are attainable as a function of the nanofabric shell thickness with outstanding freezing-delay times (FDT) longer than 2 h at −5 °C. The role of the extremely low roughness of the shell surface is settled as a critical feature for such an achievement. In addition, the characteristic interconnected microstructure of the nanofabrics is demonstrated as ideal for the fabrication of slippery liquid-infused porous surfaces (SLIPS). We present the straightforward deposition of the nanofabric on laser patterns and the knowledge of how this approach provides SLIPS with FDTs longer than 5 h at −5 °C and 1 h at −15 °C.


Diciembre, 2019 | DOI: 10.1021/acs.langmuir.9b03116

Design swelling micas: Insights on heavy metals cation exchange reaction


Osuna, FJ; Pavon, E; Alba, MD
Applied Clay Science, 182 (2019) 105298
Materiales de Diseño para la Energía y Medioambiente

ABSTRACT

Heavy metal pollution has become one of the most serious environmental problems, demanding specialized remediation mechanisms. Among the studied treatments, ion-exchange processes have been widely used due to their high remediation capacity, efficiency and fast kinetic. Here, the potential use of a new family of design micas as cation exchanger has been analysed. Micas with a layer charge in the range of brittle micas have been synthesized and their heavy metals cation exchange capacity analysed as a function of the nature of the heavy metal cations (Pb2+, Cd2+ or Hg2+), the nature of the counterions (Cl− or NO3−), concentration of the solutions and the micas layer charge. A cation exchange ratio between 35% and 154% of their cation exchange capacity (CEC) was achieved, being more efficient when mica layer charge diminished. In general, the maximum adsorption capacity followed the trend: Hg2+ > Pb2+ > Cd2+. The efficiency of the cation exchange and adsorption mechanism of the synthetic micas depended on the experimental conditions and they were more efficient than raw and modified natural clay minerals.


Diciembre, 2019 | DOI: 10.1016/j.clay.2019.105298

Understanding segregation processes in SAMs formed by mixtures of hydroxylated and non-hydroxylated fatty acids


Bueno, OVM; Benitez, JJ; San-Miguel, MA
RSC Advances, 9 (2019) 39252-39263
Materiales de Diseño para la Energía y Medioambiente

ABSTRACT

In this paper, we focus on the segregation processes emerging when preparing mixtures with different compositions of aleuritic (9,10,16 trihydroxyhexadecanoic) (ALE) and palmitic (hexadecanoic) (PAL) acids. The combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations enabled us to prove the role of the functional groups in the formation of self-assembled monolayers (SAMs) on muscovite mica surfaces. MD simulations indicate that segregation processes are favored in high ALE composition mixtures in agreement with the experimental evidence, whereas low ALE compositions promote the co-existence between segregated and dispersed systems. The secondary hydroxyl groups play a central role in the self-assembling mechanism because they control the formation of hydrogen bonding networks guarantying system stability.


Diciembre, 2019 | DOI: 10.1039/c9ra06799j

Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route


Chicardi, E; Garcia-Garrido, C; Gotor, FJ
Ceramics International, 45 (2019) 21858-21863
Reactividad de Sólidos

ABSTRACT

A novel, homogeneous, nanostructured and equiatomic (TiZrHfVNb)C-5 High Entropy Carbide (HEC) was successfully synthesised in a powder form by a mechanosynthesis process from the elemental mixture. This synthesis method for HECs, not previously reported, is simple, reproducible and carried out at room temperature. During milling, the transition metals (Ti, Zr, Hf, V and Nb) alloying and the diffusion of carbon (introduced as graphite) into the alloy structure are simultaneously induced, obtaining the expected (TiZrHfVNb)C-5 HEC. The room temperature method employed contrasts with those reported in the bibliography from binary carbides that are carried out at a very high temperature (1800-2200 degrees C), with the consequent energy savings.


Diciembre, 2019 | DOI: 10.1016/j.ceramint.2019.07.195

Graphene Formation Mechanism by the Electrochemical Promotion of a Ni Catalyst


Espinos, JP; Rico, VJ; Gonzalez-Cobos, J; Sanchez-Valencia, JR; Perez-Dieste, V; Escudero, C; de Lucas-Consuegra, A; Gonzalez-Elipe, AR
ACS Catalysis, 9 (2019) 11447-11454
Nanotecnología en Superficies y Plasma

ABSTRACT

In this work, we show that multilayer graphene forms by methanol decomposition at 280 degrees C on an electrochemically promoted nickel catalyst film supported on a K-beta Al2O3 solid electrolyte. In operando near ambient pressure photoemission spectroscopy and electrochemical measurements have shown that polarizing negatively the Ni electrode induces the electrochemical reduction and migration of potassium to the nickel surface. This elemental potassium promotes the catalytic decomposition of methanol into graphene and also stabilizes the graphene formed via diffusion and direct K-C interaction. Experiments reveal that adsorbed methoxy radicals are intermediate species in this process and that, once formed, multilayer graphene remains stable after electrochemical oxidation and back migration of potassium to the solid electrolyte upon positive polarization. The reversible diffusion of ca. 100 equivalent monolayers of potassium through the carbon layers and the unprecedented low-temperature formation of graphene and other carbon forms are mechanistic pathways of high potential impact for applications where mild synthesis and operation conditions are required.


Diciembre, 2019 | DOI: 10.1021/acscatal.9b03820

Hydrophobic and Icephobic Behaviour of Polyurethane-Based Nanocomposite Coatings


Przybyszewski, B; Boczkowska, A; Kozera, R; Mora, J; Garcia, P; Aguero, A; Borras, A
Coatings, 9 (2019) 811
Nanotecnología en Superficies y Plasma

ABSTRACT

In this paper, hydrophobic nanocomposite coatings based on polyurethane (PUR) modified by nano-silica and silane-based compounds were manufactured by spraying. The main challenge was to assess and improve the hydrophobic as well as anti-icing properties of initially hydrophilic polymer coatings. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy (SEM), optical profilometry and X-ray photoelectron spectroscopy (XPS). The results obtained showed that in order to achieve hydrophobicity, appropriate amounts of nano-silica must be incorporated in the coating, and complete coverage by nano-silica particles is necessary for achieving hydrophobicity. Coating adhesion and the durability of the hydrophobic behaviour were also studied by scratch test and frosting/defrosting cycles, respectively. The results show that use of both nano-silica and silane-based compounds improve the hydrophobic and anti-icing properties of the coating as compared to a non-modified PUR topcoat. A synergistic effect of both additives was observed. It was also found that the anti-icing behaviour does not necessarily correlate with surface roughness and the materials' wetting properties.


Diciembre, 2019 | DOI: 10.3390/coatings9120811

Porous Graphene-like Carbon from Fast Catalytic Decomposition of Biomass for Energy Storage Applications


Gomez-Martin, A; Martinez-Fernandez, J; Ruttert, M; Winter, M; Placke, T; Ramirez-Rico, J
ACS Omega, 4 (2019) 21446-21458
Materiales de Diseño para la Energía y Medioambiente

ABSTRACT

A novel carbon material made of porous graphene-like nanosheets was synthesized from biomass resources by a simple catalytic graphitization process using nickel as a catalyst for applications in electrodes for energy storage devices. A recycled fiberboard precursor was impregnated with saturated nickel nitrate followed by high-temperature pyrolysis. The highly exothermic combustion of in situ formed nitrocellulose produces the expansion of the cellulose fibers and the reorganization of the carbon structure into a three-dimensional (3D) porous assembly of thin carbon nanosheets. After acid washing, nickel particles are fully removed, leaving nanosized holes in the wrinkled graphene-like sheets. These nanoholes confer the resulting carbon material with approximate to 75% capacitance retention, when applied as a supercapacitor electrode in aqueous media at a specific current of 100 A.g(-1) compared to the capacitance reached at 20 mA.g(-1), and approximate to 35% capacity retention, when applied as a negative electrode for lithium-ion battery cells at a specific current of 3720 mA.g(-1) compared to the specific capacity at 37.2 mA.g(-1). These findings suggest a novel way for synthesizing 3D nanocarbon networks from a cellulosic precursor requiring low temperatures and being amenable to large-scale production while using a sustainable starting precursor such as recycled fiberwood.


Diciembre, 2019 | DOI: 10.1021/acsomega.9b03142

Dry Reforming of Ethanol and Glycerol: Mini-Review


Yu, J; Odriozola, JA; Reina, TR
Catalysts, 9 (2019) art. 1015
Química de Superficies y Catálisis

ABSTRACT

Dry reforming of ethanol and glycerol using CO2 are promising technologies for H-2 production while mitigating CO2 emission. Current studies mainly focused on steam reforming technology, while dry reforming has been typically less studied. Nevertheless, the urgent problem of CO2 emissions directly linked to global warming has sparked a renewed interest on the catalysis community to pursue dry reforming routes. Indeed, dry reforming represents a straightforward route to utilize CO2 while producing added value products such as syngas or hydrogen. In the absence of catalysts, the direct decomposition for H-2 production is less efficient. In this mini-review, ethanol and glycerol dry reforming processes have been discussed including their mechanistic aspects and strategies for catalysts successful design. The effect of support and promoters is addressed for better elucidating the catalytic mechanism of dry reforming of ethanol and glycerol. Activity and stability of state-of-the-art catalysts are comprehensively discussed in this review along with challenges and future opportunities to further develop the dry reforming routes as viable CO2 utilization alternatives.


Diciembre, 2019 | DOI: 10.3390/catal9121015

Ultrastable CoxSiyOz Nanowires by Glancing Angle Deposition with Magnetron Sputtering as Novel Electrocatalyst for Water Oxidation


Cano, M; Garcia-Garcia, FJ; Rodriguez-Padron, D; Gonzalez-Elipe, AR; Giner-Casares, JJ; Luque, R
Chemcatchem
Nanotecnología en Superficies y Plasma

ABSTRACT

Cobalt is one of the most promising non-noble metal as electrocatalyst for water oxidation. Herein, a highly stable silicon-cobalt mixed oxide thin film with a porous columnar nanostructure is proposed as electrocatalyst for oxygen evolution reaction (OER). CoOx and CoxSiyOz layers with similar thickness were fabricated at room temperature by magnetron sputtering in a glancing angle configuration (MS-GLAD) on tin-doped indium oxide (ITO) substrates. After characterization, a comparative study of the electrocatalytic performance for OER of both layers was carried out. The excellent long-term stability as electrocatalyst for OER of the porous CoxSiyOz thin film demonstrates that the presence of silicon on the mixed oxide network increases the mechanical stability of the Si/Co layer, whilst maintaining a considerable electrocatalytic response.


Noviembre, 2019 | DOI: 10.1002/cctc.201901730

Design of highly stabilized nanocomposite inks based on biodegradable polymer-matrix and gold nanoparticles for Inkjet Printing


Begines, Belen; Alcudia, Ana; Aguilera-Velazquez, Raul; Martinez, Guillermo; He, Yinfeng; Wildman, Ricky; Sayagues, Maria-Jesus; Jimenez-Ruiz, Aila; Prado-Gotor, Rafael
Scientific Reports, 9 (2019) 16097
Reactividad de Sólidos

ABSTRACT

Nowadays there is a worldwide growing interest in the Inkjet Printing technology owing to its potentially high levels of geometrical complexity, personalization and resolution. There is also social concern about usage, disposal and accumulation of plastic materials. In this work, it is shown that sugar-based biodegradable polyurethane polymers exhibit outstanding properties as polymer-matrix for gold nanoparticles composites. These materials could reach exceptional stabilization levels, and demonstrated potential as novel robust inks for Inkjet based Printing. Furthermore, a physical comparison among different polymers is discussed based on stability and printability experiments to search for the best ink candidate. The University of Seville logo was printed by employing those inks, and the presence of gold was confirmed by ToF-SIMS. This approach has the potential to open new routes and applications for fabrication of enhanced biomedical nanometallic-sensors using stabilized AuNP.


Noviembre, 2019 | DOI: 10.1038/s41598-019-52314-2

Phyllite clays as raw materials replacing cement in mortars: Properties of new impermeabilizing mortars


Arce, Carolina; Garzon, Eduardo; Sanchez-Soto, Pedro J.
Construction and Building Materials, 224 (2019) 348-358
Materiales Avanzados

ABSTRACT

The aim of this investigation was to determine the suitability of phyllite clays as a raw construction material. For that purpose, the cement in mortars was replaced by a phyllite clay (0–90 wt%) making this study the first of its kind to be performed. These materials were prepared with different water proportions according to the water content and water/cement and water/binder (cement plus phyllite clay) relationships. A comparative study of the most important properties of the resulting experimental mortars was carried out, such as apparent density, water retentivity, consistency and mechanical strength (flexural and compressive strength), along with an evaluation of the pozzolanic activity and permeability. The results showed that the increase of phyllite decreases the apparent density, the consistency and mechanical properties of the mortar, while water retentivity fluctuates. Good correlations (R2 > 0.84) were obtained between flexural and compressive strength for the mortars after 28 days of curing. Pozzolanic activity was observed at cement replacement of 80 wt% of phyllite. Moreover, new impermeabilizing mortars constituted by phyllite clay and cement have been obtained according to the low coefficients of permeability. Taking into account the findings of this research, phyllite clays can be applied as raw construction materials with savings derived from replacing cement in mortars and the low energy consumption involved in their production. However, the present study concluded that the use of phyllite clays did not improve the mechanical strength of these new mortars but, in contrast, they can be applied for impermeabilization purposes in Construction and Civil Engineering.


Noviembre, 2019 | DOI: 10.1016/j.conbuildmat.2019.07.081

Encapsulation of Upconversion Nanoparticles in Periodic Mesoporous Organosilicas


Rahmani, S; Jimenez, CM; Aggad, D; Gonzalez-Mancebo, D; Ocana, M; Ali, LMA; Nguyen, C; Nieto, AIB; Francolon, N; Oliveiro, E; Boyer, D; Mahiou, R; Raehm, L; Gary-Bobo, M; Durand, JO; Charnay, C
Molecules, 24 (2019) 22
Materiales Coloidales

ABSTRACT

(1) Background: Nanomedicine has recently emerged as a promising field, particularly for cancer theranostics. In this context, nanoparticles designed for imaging and therapeutic applications are of interest. We, therefore, studied the encapsulation of upconverting nanoparticles in mesoporous organosilica nanoparticles. Indeed, mesoporous organosilica nanoparticles have been shown to be very efficient for drug delivery, and upconverting nanoparticles are interesting for near-infrared and X-ray computed tomography imaging, depending on the matrix used. (2) Methods: Two different upconverting-based nanoparticles were synthesized with Yb3+-Er3+ as the upconverting system and NaYF4 or BaLuF5 as the matrix. The encapsulation of these nanoparticles was studied through the sol-gel procedure with bis(triethoxysilyl)ethylene and bis(triethoxysilyl)ethane in the presence of CTAB. (3) Results: with bis(triethoxysilyl)ethylene, BaLuF5: Yb3+-Er3+, nanoparticles were not encapsulated, but anchored on the surface of the obtained mesoporous nanorods BaLuF5: Yb3+-Er3+@Ethylene. With bis(triethoxysilyl)ethane, BaLuF5: Yb3+-Er3+ and NaYF4: Yb3+-Er(3+)nanoparticles were encapsulated in the mesoporous cubic structure leading to BaLuF5: Yb3+-Er3+@Ethane and NaYF4: Yb3+-Er3+@Ethane, respectively. (4) Conclusions: upconversion nanoparticles were located on the surface of mesoporous nanorods obtained by hydrolysis polycondensation of bis(triethoxysilyl)ethylene, whereas encapsulation occurred with bis(triethoxysilyl)ethane. The later nanoparticles NaYF4: Yb3+-Er3+@Ethane or BaLuF5: Yb3+-Er3+@Ethane were promising for applications with cancer cell imaging or X-ray-computed tomography respectively.


Noviembre, 2019 | DOI: 10.3390/molecules24224054

Graphene nanoplatelets for electrically conductive 3YTZP composites densified by pressureless sintering


Lopez-Pernia, C; Gallardo-Lopez, A; Morales-Rodriguez, A; Poyato, R
Journal of the European Ceramic Society, 39 (2015) 4435-4439
Reactividad de Sólidos

ABSTRACT

3 mol% yttria tetragonal zirconia polycrystalline (3YTZP) ceramic composites with 2.5, 5 and 10 vol% graphene nanoplatelets (GNP) were pressureless sintered in argon atmosphere between 1350 and 1450 degrees C. The effects of the GNP content and the sintering temperature on the densification, microstructure and electrical properties of the composites were investigated. An isotropic distribution of GNP surrounding ceramic regions was exhibited regardless the GNP content and sintering temperature used. Electrical conductivity values comparable to the ones of fully dense composites prepared by more complex techniques were obtained, even though full densification was not achieved. While the composite with 5 vol% GNP exhibited electrical anisotropy with a semiconductor-type behaviour, the composite with 10 vol% GNP showed an electrically isotropic metallic-type behaviour.


Noviembre, 2019 | DOI: 10.1016/j.jeurceramsoc.2019.05.067

Páginas

icms