Menú secundario

Proyectos de Investigación

Nuevos agentes de contraste multimodales para el diagnóstico médico por imagen




05-10-2021 / 30-06-2023



Investigador Principal: Ana Isabel Becerro Nieto
Organismo Financiador: Junta de Andalucía
Código: P20_00182 - PAIDI 2020
Componentes: Manuel Ocaña Jurado, Nuria O. Nuñez Alvarez, María Luisa García Martín
Grupo de Investigación: Materiales Coloidales

El proyecto persigue el diseño de agentes de contraste (CAs) multimodales para el registro de imágenes para diagnóstico médico. Estos CAs estarán constituidos por nanopartículas inorgánicas basadas en lantánidos con propiedades adecuadas para el registro de imágenes mediante técnicas complementarias, con objeto de obtener información esencial para un diagnóstico médico más riguroso sin necesidad de inyectar al paciente CAs específicos para cada técnica. Una ventaja adicional de las sondas propuestas respecto a los CAs comerciales es que permiten controlar el tiempo de residencia en el organismo y su biodistribución y, por tanto, disminuir las dosis necesarias, resultando en un claro beneficio para el paciente. En concreto, se desarrollarán agentes de contraste para resonancia magnética (MRI) dual con funcionalidad adicional como agentes de contraste para para tomografía computarizada de rayos X (CT) e imagen luminiscente en la región del infrarrojo cercano (NIR) conocida como ventana biológica (650-1800 nm), en la que las radiaciones no son dañinas para los tejidos y tienen alto poder de penetración en los mismos. Se ensayarán varias composiciones: fosfatos, vanadatos, molibdatos y volframatos de elementos lantánidos tales como el Gd, Dy y Ho, que aportarán la funcionalidad magnética y cuyo alto número atómico es óptimo para CT. El dopado de todas ellas con Nd3+ permitirá la obtención de imágenes luminiscentes en el NIR. La exploración de la aplicabilidad de dichas sondas al campo del diagnóstico médico por imagen se llevará a cabo mediante la obtención de imagen “in vivo” en ratones.


Demostración en entorno relevante del uso de reacciones de calcinación-solar/carbonatación para almacenamiento de energía térmica




01-12-2021 / 30-11-2023



Investigador Principal: Luis A. Pérez Maqueda / Pedro Enrique Sánchez Jiménez
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: PDC2021-121552-C21 - Proyectos I+D+i "Prueba de Concepto"
Grupo de Investigación: Reactividad de Sólidos

España es uno de los países europeos con mayor irradiación solar media y lider mundial en implantación de Energía Solar Concentrada (CSP). Una ventaja de la tecnología CSP es su capacidad de almacenar energía térmica y usarla cuando no hay irradiación. La plantas CSP de última generación incluyen sistemas de almacenamiento en sales fundidas (calor sensible) que pesentan limitaciones: temperatura máxima limitada por degradación térmica, almacenaje a alta temperatura para evitar solidificación, corrosión y coste. En nuestro proyecto CTQ2017 se investigó el almacenamiento termoquímico mediante reacciones de calcinación/carbonatación, proceso calcium-lopping (CaL), usando caliza natural, que es abundante, barata, no corrosiva y permite operar a alta temperatura aumentando la eficiencia de conversión termoeléctrica. Su densidad energética (~1 MWhr/m3) es superior al de las sales (0.25-0.40 MWhr/m3). Un problema del CaL para almacenamiento termoquímico es la desactivación del CaO con el número de ciclos. En nuestro proyecto CTQ2017 se propusieron diversas estrategias de mejora con las que se consiguieron rendimientos muy altos incluso después de muchos ciclos: (i) cambio de condiciones de calcinación-carbonatación (reducción de la temperatura de calcinación e incrementar la de carbonatación para mejorar el rendimiento tanto del proceso como de la planta) y (ii) propuesta de otros carbonatos diferentes de la caliza, uso de aditivos, uso de residuos (escorias) y materiales sintéticos de bajo coste. Estos resultados de laboratorio son de extraordinario interés para su aplicación a plantas de CSP, pero para su transferencia se requiere de validación en entorno relevante. En este proyecto se propone escalar los resultados de laboratorio mediante ensayos en planta piloto, el desarrollo y ensayo de un nuevo calcinador solar, así como la evaluación de la viabilidad técnico-económica de la tecnología a escala industrial. En este proyecto se desarrollará una prueba de concepto de un novedoso reactor/intercambiador de calor de tipo ciclón basado en energía solar. La radiación solar concentrada alcanzará el calcinador solar tipo ciclón mediante un sistema beam-down (concentrador solar secundario) desde el campo solar, formado por 14 heliostatos con una superficie total de 30 m2 de la planta piloto construida en el marco del proyecto H2020 SOCRATCES, en el que han participado la mayor parte de los miembros del equipo de investigación del proyecto coordinado. El estudio y desarrollo de esta prueba de concepto permitirá establecer la viabilidad del diseño y demostrar su interés a empresas del sector energético y del cemento de cara a una futura integración de energía solar, en busca de una reducción de costes y emisiones de CO2. Se parte de estudios a nivel de concepto desarrollados en el proyecto CTQ2017 con nivel de madurez tecnológica TRL 4, y se estima que se avanzará hasta niveles TRL 5-6. Se realizará un análisis de la viabilidad económica de la implantación de los nuevos conceptos propuestos en el marco del proyecto CTQ2017 y se elaborará un plan de transferencia. Este plan recogerá las acciones a llevar a cabo para favorecer una transferencia efectiva al sector industrial. Además, dado el potencial de patentabilidad de la tecnología objeto del proyecto, una vez probada en escala relevante (prueba de concepto), se desarrollará un plan de explotación y protección de derechos intelectuales.


Dispositivo optofluidico NIR para análisis de líquidos




01-12-2021 / 30-11-2023



Investigador Principal: Francisco Yubero Valencia
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: PDC2021-121379-I00 - Proyectos I+D+i "Prueba de Concepto"
Componentes: Juan Pedro Espinós Manzorro, Ramón González García, Victor J. Rico Gavira, Agustín R. González-Elipe
Grupo de Investigación: Nanotecnología en Superficies y Plasma

NIRFLOW es un proyecto I+D+i para la realización de una Prueba de Concepto en el que se plantea desarrollar un prototipo precomercial para análisis óptico en el infrarojo cercano de fluidos en condiciones de flujo en entornos industriales relevantes. El proyecto se basa en varias innovaciones no contempladas en equipos comerciales basados en análisis NIR hoy en el mercado. De un lado, sustituir la óptica de análisis NIR convencional operada por espectrómetros NIR basados en redes de difracción o óptica de Fourier por una selección de la longitud de onda de análisis basada en combinaciones de filtros ópticos de paso alto y paso bajo variables de forma continua con respuesta sintonizada (centro y anchura de banda) a voluntad en el NIR. De otro lado, la celda optofluidica a desarrollar, operada en modo transflectancia, se caracteriza por tener camino óptico de análisis variable y sintonizable a los sobretonos de las absorciones características de las moléculas presentes en el fluido problema. De esta manera, los análisis estadísticos característicos de la espectroscopía NIR se van a ver apoyados por variables independiente (medidas correspondientes no sólo a variaciones de longitud de onda, sino también a distintos caminos ópticos de análisis), lo cual va a propiciar análisis estadísticos más robustos que los convencionales. Finalmente, el equipo se va a desarrollar con una concepción microfluídica de análisis automática, para su operación en remoto mediante tecnología wireless. Estas tres innovaciones hacen de NIRFLOW un proyecto I+D+i en el que parte de los conocimientos y uno de los desarrollos realizado en un proyecto de investigación previo del Plan Estatal (MAT2016-79866-R), parcialmente protegido con una patente, se pretende transferir a la sociedad a través del desarrollo de un equipo precomercial que demuestre sus capacidades de análisis en entornos operacionales significativos, en particular para el seguimiento de procesos de fermentación ligados a la producción de vinos.


Acido fórmico como vector de energía: de la biomasa al hidrógeno verde




01-09-2021 / 31-08-2025



Investigador Principal: Miguel Angel Centeno Gallego / Svetlana Ivanova
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: PID2020-113809RB-C32 - Proyectos I+D+i "Retos Investigación"
Componentes: Leidy Marcela Martínez Tejada, María Isabel Domínguez Leal
Grupo de Investigación: Química de Superficies y Catálisis

El presente proyecto forma parte del proyecto coordinado ENERCATH2 que pretende integrar una estrategia que involucra múltiples reacciones para la producción y uso de hidrogeno verde a partir de la biomasa. El objetivo último es contribuir al desarrollo de tecnologías energéticas sostenibles que sustituyan a las actuales, derivadas de las fuentes fósiles. Específicamente, el proyecto del ICMS se centra en el uso del ácido fórmico como vector energético de hidrógeno, dado que es un compuesto químico líquido con una alta densidad gravimétrica de energía, que puede ser almacenado, transportado y manipulado de manera segura usando la infraestructura existente de distribución de hidrocarburos.

El objetivo principal del proyecto es la generación de ácido fórmico a partir de biomasa lignocelulósica y la posterior obtención de corrientes de hidrógeno a partir de éste. Para este fin, se pretende desarrollar catalizadores novedosos, preferiblemente basados en carbones derivados de la biomasa y/o en metales de transición, no nobles, (V, Ni, Cu, Co, etc.), activos, selectivos y estables, para: i) la oxidación directa y selectiva de la biomasa lignocelulósica, e.g. glucosa, bien hacia la producción masiva de ácido fórmico, bien hacia la producción de una mezcla de ácido fórmico con otros co-productos, tales como el ácido levulínico, que pueden servir como punto de partida para la generación de productos plataforma de interés industrial, intermedios en la producción de combustibles y ii) la deshidrogenación de ácido fórmico, tanto en fase líquida como gaseosa, para la producción de corrientes de hidrógeno libres de CO.

Los catalizadores preparados serán caracterizados estructural y químicamente por una gran variedad de técnicas (DRX, XPS, SEM, HRTEM, Raman, DRIFTS, TPR/TPD, UV-Vis, Análisis textural), tanto pre- como post-reacción, para evaluar las posibles modificaciones ocurridas en el transcurso de la misma. Igualmente, se realizarán estudios en condiciones de reacción (in-situ y operando) por espectroscopias DRIFTS y ATR, lo que, junto con los resultados de actividad y de caracterización, permitirá analizar el mecanismo de las reacciones y así poder establecer la relación estructura-actividad en cada caso. El conocimiento de esta relación permitirá optimizar el catalizador diseñado y, en última instancia, cada proceso catalítico de producción de vectores sostenibles de energía propuesto en el proyecto


Avanzando hacia la economía circular: Biocombustibles para el transporte pesado, a partir del reciclado de residuos (NICER BIOFUELS)




01-09-2021 / 31-08-2024



Investigador Principal: José Antonio Odriozola Gordón / Tomás Ramírez Reina
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: PLEC2021-008086
Componentes: María Isabel Domínguez Leal, Laura Pastor Pérez
Grupo de Investigación: Química de Superficies y Catálisis

Financiado por el programa RETOS-COLABORACION PUBLICO-PRIVADA del Ministerio de Ciencia e Innovacion con fondos EU bajo el marco Next Generation Europe, NICER BIOFUELS es fruto de la colaboracion entre las Universidades de Zaragoza y Sevilla y la multinacional URBASER. En el contexto de la economia circular y el desarollo de combustibles sostenibles que permitan descarbonizar el transporte y avanzar hacia una sociedad libre de emisiones, NICER-BIOFUELS representa un paso adelante para combatir el cambio climitaco combinando ciencia fundamental e ingenieria aplicada.


icms