Menú secundario

Research Projects

Development of carbon-based composites for biomedical applications




15-03-2011 / 15-03-2014



Research Head: Juan Carlos Sánchez López
Organismo Financiador: Junta de Andalucía
Código: P10-TEP 06782
Componentes: T. Cristina Rojas, Carlos López Cartes, David Abad, Vanda Godinho, Santiago Domínguez, Inmaculada Rosa
Grupo de Investigación: Materiales Nanoestructurados y Microestructura

This project pursues the development of carbon-based coatings including the tailored synthesis, characterization, evaluation in wear tests and biocompatibility study for the application in artificial implants. The control of the carbon chemical bonding (sp2/sp3) and the chemical composition, including metals as (Ag, Ti) or other elements (B, N, O) will enable to tune the mechanical and tribological properties (hardness, friction and wear resistance) with the aim of improving the final performance. To achieve this goal, the use of magnetron sputtering technique is envisaged to deposit advanced coatings under different synthesis conditions. Next, these carbon composites will be evaluated comparatively in friction and wear tests that simulate the conditions that these materials will face in the final application. In this way, it will be possible to establish the correlation between the observed behavior and chemical and structural characteristics of the prepared layers in cell adhesion tests, cytotoxicity and antibacterial activity. This complete characterization will provide an excellent overview of the possibilities of technological transfer of these advanced materials to the biomedicine.


Functionalized for hypethermia applications and evaluation of ecotoxicity




03-02-2010 / 02-02-2013



Research Head: Asunción Fernández Camacho
Organismo Financiador: Junta de Andalucía
Código: P09-FQM-4554
Componentes: J. Blasco, M. Hampel, Carlos López, L.M. Lubián, I. Moreno, Miguel Angel Muñoz, David Philippon, T. Cristina Rojas, Inmaculada Rosa, Carlos García-Negrete
Grupo de Investigación: Materiales Nanoestructurados y Microestructura

This Excellence project is taking profit of the previous experience of the group TEP-217 in the development and characterization of functionalized biocompatible nanoparticles and potentially trying to advance in four directions. a) Continue with the development of nanoparticle based mainly on Au, Ag and magnetic oxides with different functionalizations and microstructure. b) To deepen the physical-chemical interaction with electromagnetic fields (in a wide range of frequencies from kHz to GHz) to produce local heating. Currently, various mechanisms have been proposed (Eddy current, hysteresis, relaxation of magnetic moments and Brownian motion) without enough data yet existing to understand and interpret the experimental results. c) Establish a multidisciplinary collaboration with the group RNM-306, a specialist in ecotoxicity testing, to improve the knowledge of the environmental impact of nanoparticles (mainly gold and silver) in marine ecosystems, which are the ultimate sink for a good part of nanomaterials currently produced. d) Conduct preliminary studies of the toxicity of nanoparticles as a function of applied magnetic field. In any project dedicated to nanotechnology is extremely valuable to introduce studies to determine the toxicological and environmental impact of new materials being developed at present. A key objective of this project is the training of research personnel through the implementation of one doctoral thesis at the Institute of Materials Science of Seville.


Role of additives in the reactive hydride composite systems for hydrogen storage




01/01/2010 - 31/12/2012



Research Head: Asunción Fernández Camacho
Organismo Financiador: Ministerio de Educación y Ciencia
Código: CTQ2009-13440
Componentes: Carlos López, Cristina Rojas Ruiz, Gisela Arzac, Dirk Hufschmidt, Raimondo Ceccini, Emilie Deprez
Grupo de Investigación: Materiales Nanoestructurados y Microestructura

Due to the expected short-medium term exhaustion of fossil fuels and due to clime changes produced by the green house effect, it is necessary to reconsider a new global energy policy. Hydrogen, as a vector for energy storage and transport, is an attractive candidate for a clean handling of energy. In the present project it is proposed the study of the so called reactive hydride composite systems (RHC) for hydrogen storage. These systems are based in the coupling of a single metal hydride (i.e. MgH2) with a complex hydride (typically a borohydride compound, i.e LiBH4) to give a reversible reaction that is producing or consuming hydrogen. The system can so be used as a hydrogen storage material according to following reaction: MgH2+2LiBH4 ↔ MgB2+LiH+4H2 (11.4 wt% hydrogen storage capacity). The reaction is improving the heat transfer handling, as compared to pure MgH2, by reducing heat release during the charging process. To improve the kinetic aspects (reduction of operation temperatures and times) it has been proposed the use of catalysts a/o additives. The main objective of the project is to understand the role of these additives to improve the hydrogen sorption kinetics. In particular commercial Ti-Isopropoxide (TiO4C12H28) , TiO2 and VCl3 have been selected as additives for this study. Also other catalysts like Co3B, Ni3B or RuCo will be prepared in our laboratory and also tested. The systems will be prepared and activated by high energy ball milling of the two hy-dride materials milled together with or without the additives (5-10 mol%). Kinetic studies will be carried out by gravimetric and volumetric hydrogen sorption measurements (hydrogen desorption or adsorption vs. time at constant T) and differential scanning calorymetry (DSC) analysis. An exhaustive microstructural and chemical analysis of the systems at the different step (as prepared, desorbed and re-absorbed) will be undertaken by following techniques: X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) coupled to EDX (energy dispersive X-Ray) and EELS (Electron Energy Loss Spectroscopy) analysis, X-Ray Photoelectrton Spectroscopy (XPS) and X-Ray absorption Spectroscopy (XAS). The comparative study of the samples, with and without additives, and the correlation between the kinetic studies and the microstructural and chemical analysis, should clarify the mechanisms of the kinetic improvements produced by the additives. These mechanisms are today far from being understood. On basis of the acquired knowledge we expect to significantly improve the systems with respect to hydrogen storage applications.


Surface functionalisation of materials for high added value applications (FUNCOAT)




15-12-2008 / 15-12-2013



Research Head: Agustín R. González-Elipe
Organismo Financiador: Ministerio de Ciencia e Innovación
Código: CSD2008- 00023 (Consolider)
Componentes: Fernández Camacho, A., Espinós, J.P., Yubero, F., Cotrino, J., Sánchez López, J.C., Barranco, A., Palmero, A., Rojas, C.
Grupo de Investigación: Materiales Nanoestructurados y Microestructura, Grupo de Investigación: Nanotecnología en Superficies y Plasma

FUNCOAT is an integrated project within the application call CONSOLIDER-INGENIO 2010 aiming at the exploitation of synergies existing in the Spanish scientific community, with the general objective of developing principles, processes and devices related to the surface functionalisation of materials. The project integrates 14 well-accredited research centres covering from fundamental and theoretical aspects to final applications. This large effort of integration is critical to achieve substantial advances in this broad field, which go beyond the mere accumulation of results. The research teams belong to different institutions: University, CSIC (responsible for the management of the project) and Technological centres. They maintain scientific relationships among them that extend over the last 15 years. Specific scientific and technological objectives are: understanding of fundamental phenomena driving the modification of surfaces and interfaces, control of the micro- and nano- structure of surfaces and thin films, optimization of thin film deposition methods, process development of multifunctional surfaces for novel applications (mechanical and metallurgical, optical, magnetic, energy, biomaterials, etc) and, finally, the production of new devices based on functionalised surfaces. Other important objectives include the technological transfer of the scientific results to the productive sectors as well as the education and training of scientists, young researchers and engineers. Strategic sectors of our modern society where the activities of FUNCOAT find a direct impact are material processing, energy, environment, health care, agriculture, etc. In order to accomplish an efficient coordination of efforts and the integration of the activities of all the groups, the project is structured around six workpackages: A) Fundamental phenomena in surfaces, interfaces and thin films, B) New processes for the control of the micro- and nano- structure of films and surfaces, C) Mechanical and metallurgical coatings for surface protection, D) Chemical functionalisation and biomedical applications, E) Coatings for optical control, photonic applications and solar energy collection and F) Novel magnetic phenomena in surfaces/interfaces.


Creating and disseminating novel nano-mechanical characterization techniques and standars (NANOINDENT)




01-09-2008 / 31-08-2011



Research Head: Asunción Fernández Camacho
Organismo Financiador: Unión Europea
Código: NMP3-CA-2008-218659
Componentes: Godinho, V., Philippon, D.
Grupo de Investigación: Materiales Nanoestructurados y Microestructura

Our project aims to gather, improve, catalogue and present characterisation tech-niques, methods and equipment for nanomechanical testing. European-wide activities coordinated by a new virtual centre will improve existing nanoindentation metrology to reveal structure-properties relationship at the nano-scale. These methods are the only tools to characterise nanocomposite, nanolayer and interface mechanical behaviours in the nanometre range. This work will also lay down a solid base for subsequent efforts for defining and preparing new standards to support measurement technology in the field of nanomaterials characterisation. Steps include development of the classical and the dynamic nanoindentation method and its application to new fields, application of modified nano-indenters to new fields as scratching and wear measurement, firm and uniform determination of instrumental parameters and defining new standard samples for the new applications. The virtual centre will disseminate information based on a new “Nanocharacterisation database” built on two definite levels: on a broader level partners will inventory and process all novel nanocharacterisation techniques and, in narrower terms, they will concentrate on nanomechanical characterisation. This will be achieved through the synchronisation of efforts set around a core of round robins but the database will include data of other channels as parallel research work and literature recherché.


icms