Scientific Papers in SCI

2014


Title: Dye sensitized solar cells as optically random photovoltaic media
Author(s): Galvez, FE; Barnes, PRF; Halme, J; Miguez, H
Source: Energy & Environmental Science, 6 (2014) 1260-1266

abstract | fulltext

In order to enhance optical absorption, light trapping by multiple scattering is commonly achieved in dye sensitized solar cells by adding particles of a different sort. Herein we propose a theoretical method to find the structural parameters (particle number density and size) that optimize the conversion efficiency of electrodes of different thicknesses containing spherical inclusions of diverse composition. Our work provides a theoretical framework in which the response of solar cells containing diffuse scattering particles can be rationalized. Optical simulations are performed by combining a Monte Carlo approach with Mie theory, in which the angular distribution of scattered light is accounted for. Several types of scattering centers, such as anatase, gold and silver particles, as well as cavities, are considered and their effect compared. Estimates of photovoltaic performance, insight into the physical mechanisms responsible for the observed enhancements, and guidelines to improve the cell design are provided. We discuss the results in terms of light transport in weakly disordered optical media and find that the observed variations between the optimum scattering configurations attained for different electrode thicknesses can be understood as the result of the randomization of the light propagation direction at different depths within the active layer. A primary conclusion of our study is that photovoltaic performance is optimised when the scattering properties of the film are adjusted so that the distance over which incident photons are randomized is comparable to the thickness of the film. This simple relationship could also be used as a design rule to attain the optimum optical design in other photovoltaic materials.

February, 2014 | DOI: 10.1039/C3EE42587H

Title: Production of hydrogen by water photo-splitting over commercial and synthesised Au/TiO2 catalysts
Author(s): Mendez, JAO; Lopez, CR; Melian, EP; Diaz, OG; Rodriguez, JMD; Hevia, DF; Macias, M
Source: Applied Catalysis B: Environmental, 147 (2014) 439-452

abstract | fulltext

H2 production from methanol/water photo-splitting was compared using various commercial photocatalysts (Evonik P25 (P25), Hombikat UV-100 (HB) and Kronos vlp7000 (KR)) and others synthesised with a sol–gel-hydrothermal (HT) process and a sol–gel method followed by calcination (SG400 and SG750). All photocatalysts had been surface modified with Au at different concentrations, from 0.2 to 6.0 wt.%, using the photodeposition method. A complete characterisation study of the different photocatalysts was performed (BET, XRD, TEM, SEM-EDX, FTIR, UV–vis Reflectance Diffuse Spectra and aggregate size). The experiments were conducted for 3.5 h using 1 g L−1 of photocatalyst with methanol (25 vol.%) as sacrificial agent. In addition to H2 generation, production of the main intermediates, formaldehyde and formic acid, and of CO2 was also evaluated. The commercial photocatalyst KR at 0.8 wt.% Au had the highest H2 production of all the photocatalysts studied with 1542.9 μmol h−1. Of the photocatalysts synthesised by our group, SG750 at Au loading of 2.0 wt.% gave the highest H2 production of 723.1 μmol h−1. The SG750 photocatalyst at Au loading of 2.0 wt.% also had the highest H2 production yield per unit of surface area at 45.5 μmol g h−1 m−2.

April, 2014 | DOI: 10.1016/j.apcatb.2013.09.029

Title: Improved H2 production of Pt-TiO2/g-C3N4-MnOx composites by an efficient handling of photogenerated charge pairs
Author(s): Obregon, S; Colon, G
Source: Applied Catalysis B: Environmental, 144 (2014) 775-782

abstract | fulltext

Pt-TiO2/g-C3N4-MnOx hybrid structures are synthesized by means of a simple impregnation method of Pt-TiO2 and g-C3N4-MnOx. From the wide structural and surface characterization we have stated that TiO2/g-C3N4 composites are formed by an effective covering of g-C3N4 by TiO2. The modification of composite by Pt and/or MnOx leads to improved photoactivities for phenol degradation reaction. Moreover, enhanced photoactivities have been obtained for composites systems for H2 evolution reaction. The notably photocatalytic performance obtained was related with the efficient separation of charge pairs in this hybrid heterostructure.

January, 2014 | DOI: 10.1016/j.apcatb.2013.07.034

Title: Effect of gold on a NiLaO3 perovskite catalyst for methane steam reforming
Author(s): Palma, S; Bobadilla, LF; Corrales, A; Ivanova, S; Romero-Sarria, F; Centeno, MA; Odriozola, JA
Source: Applied Catalysis B: Environmental, 144 (2014) 846-854

abstract | fulltext

The effect of gold addition to a supported Ni SRM catalyst has been studied in this work in order to determine the influence of gold on both the amount and type of carbon species formed during the reaction. The structure of the support, a mixed La–Al perovskite, determines the catalyst reducibility and Ni particle size. Gold addition affects the metal particle size increasing metal dispersion on increasing the gold content. Therefore, although gold blocks step Ni sites, the more active sites for Csingle bondH activation, and increases electron density on nickel, the higher dispersion results in an apparently higher activity upon gold addition. Moreover, gold addition increases the catalyst stability by decreasing the rate of growth of carbon nanotubes.

January, 2014 | DOI: 10.1016/j.apcatb.2013.07.055

Title: Effect of the type of acid used in the synthesis of titania–silica mixed oxides on their photocatalytic properties
Author(s): Llano, B; Hidalgo, MC; Rios, LA; Navio, JA
Source: Applied Catalysis B: Environmental, 150-151 (2014) 389-395

abstract | fulltext

TiO2–SiO2 mixed oxides were synthesized by the sol–gel technique using three different acids, i.e., acetic, sulfuric, or chlorhydric acid. Their photocatalytic behavior was evaluated on the phenol oxidation in liquid phase and correlated with the characterization results. It was found that the kind of acid used during the preparation strongly influences the phase composition and stability of the TiO2 phases incorporated in the silica structure as well as the photocatalytic activity. In all cases, silica introduced a dispersive effect that stabilized the TiO2 crystalline phases upon calcination at 700 °C. SO42− and CH3COO− ions stabilized the anatase phase at high calcination temperatures (700 °C) leading to samples with the highest photoactivities. Cl− ions induced the formation of traces of rutile and brookite resulting in a lower photoactivity. The highest photoactivity was achieved with the catalyst synthesized with acetic acid and calcined at 700 °C (TS1-700-ace). The photocatalytic performance of this material was even better than that obtained with the commercial catalyst Degussa P-25.

May, 2014 | DOI: 10.1016/j.apcatb.2013.12.039

Title: Correlation study between photo-degradation and surface adsorption properties of phenol and methyl orange on TiO2 Vs platinum-supported TiO2
Author(s): Murcia, JJ; Hidalgo, MC; Navio, JA; Arana, J; Dona-Rodriguez, JM
Source: Applied Catalysis B: Environmental, 150-151 (2014) 107-115

abstract | fulltext

Adsorption of phenol and methyl orange on the surface of TiO2 and Pt–TiO2 photocatalysts was investigated by FT-IR spectroscopy. It was found that platinum plays an important role in the adsorption properties of the studied substrates on TiO2. Platinum deposits modified the phenol-photocatalyst interaction providing new adsorption sites on TiO2 surface. On Pt–TiO2 photocatalysts, phenol mainly interacts via formation of adsorbed phenolates species. It was also found that the adsorption of methyl orange on titania and Pt–TiO2 photocatalysts occurs via interaction of the azo group with surface Ti4+. Pt photodeposition significantly increases the TiO2 photoreactivity in phenol and methyl orange photo-degradation; however, this increase depends on the properties of the Pt deposits. Moreover, it was observed that platinum content is the main factor determining the substrate-photocatalyst interaction and therefore the Pt–TiO2 photocatalytic performance.

May, 2014 | DOI: 10.1016/j.apcatb.2013.12.010

Title: In situ XAS study of an improved natural phosphate catalyst for hydrogen production by reforming of methane
Author(s): Abba, MO; Gonzalez-DelaCruz, VM; Colon, G; Sebti, S; Caballero, A
Source: Applied Catalysis B: Environmental, 150-151 (2014) 459-465

abstract | fulltext

Some nickel catalysts supported on natural phosphate (NP) have been tested for the dry methane reforming reaction. Although the original impregnated 15%Ni/NP catalyst has no activity at all, the modification of the support by mechano-chemical and/or acid treatment strongly improved the catalytic performance, yielding a series of very active and stable catalysts. The chemical and physical characterization by X-ray diffraction (XRD), temperature programmed reduction (TPR), in situ X-ray absorption spectroscopy (XAS) and other techniques have shown that these treatments mainly modify the interaction between the nickel phase and the support surface. The nickel ions occupy calcium position in the surface of the phosphate phase, which stabilizes and improves the dispersion of nickel species. The final reduced catalysts present a much better dispersed metallic phase interacting with the NP surface, which has been identified as responsible for the observed outstanding catalytic performances.

May, 2014 | DOI: 10.1016/j.apcatb.2013.12.031

Title: Could an efficient WGS catalyst be useful in the CO-PrOx reaction?
Author(s): Reina, TR; Papadopoulou, E; Palma, S; Ivanova, S; Centeno, MA; Ioannides, T; Odriozola, JA
Source: Applied Catalysis B: Environmental, 150-151 (2014) 554-563

abstract | fulltext

This work presents an evaluation of a high performance series of water gas shift (WGS) catalysts in the preferential CO oxidation reaction (PrOx) in order to examine the applicability of the same catalyst for both processes as a first step for coupling both reactions in a single process. Gold based catalysts are applied in an extensive study of the CO-PrOx reaction parameters, such as λ, WHSV, CO concentration and [H2O]/[CO2] ratio in order to obtain the best activity/selectivity balance. CO and H2 oxidation reactions were treated separately in order to establish the degree of CO/H2 oxidation competition. Additionally the catalysts behavior in the CO-PrOx parallel reactions such a WGS and RWGS have been also carried out to analyze their effect on product composition.

May, 2014 | DOI: 10.1016/j.apcatb.2014.01.001

Title: Low Temperature Production of Formaldehyde from Carbon Dioxide and Ethane by Plasma-Assisted Catalysis in a Ferroelectrically Moderated Dielectric Barrier Discharge Reactor
Author(s): Gomez-Ramirez, A; Rico, VJ; Cotrino, J; Gonzalez-Elipe, A; Lambert, RM
Source: ACS Catalysis, 4 (2014) 402-408

abstract | fulltext

Plasma-assisted catalysis of the reaction between CO2 and C2H6 in a single-pass, ferroelectrically moderated dielectric barrier discharge reactor has been studied at near ambient temperature as a function of physicochemical and electrical reaction variables. The presence of small amounts of a vanadia/alumina catalyst dispersed on the BaTiO3 ferroelectric markedly enhanced the production of formaldehyde, the focus of this work. A maximum HCOH selectivity of 11.4% (defined with respect to the number of ethane carbon atoms consumed) at 100% ethane conversion was achieved, the other products being CO, H2O, H2, CH4 and a small amount of C3H8. N2O was also an effective partial oxidant (HCOH selectivity 8.9%) whereas use of O2 led to complete combustion, behavior that may be rationalized in terms of the electron impact excitation cross sections of the three oxidants. Control experiments with the coproducts CH4 and C3H8 showed that these species were not intermediates in HCOH formation from C2H6. Analysis of reactor performance as a function of discharge characteristics revealed that formaldehyde formation was strongly favored at low frequencies where the zero-current fraction of the duty cycle was greatest, the implication being that plasma processes also acted to destroy previously formed products. A tentative reaction mechanism is proposed that accounts for the broad features of formaldehyde production.

February, 2014 | DOI: 10.1021/cs4008528

Title: Interaction of Hydrated Cations with Mica-n (n = 2, 3 and 4) Surface
Author(s): Pavon, E; Castro, MA; Cota, A; Osuna, FJ; Pazos, MC; Alba, MD
Source: Journal of Physical Chemistry C, 118 (2014) 2115-2121

abstract | fulltext

High charged swelling micas, with layer charge between 2 and 4, have been found to readily swell with water, and complete cation exchange (CEC) can be achieved. Because of their high CEC, applications like radioactive cation fixation or removal of heavy metal cations from wastewater were proposed. Their applicability can be controlled by the location of the interlayer cation in a confined space with a high electric field. In synthetic brittle micas, the interlayer cation has a low water coordination number; therefore, their coordination sphere would be completed by the basal oxygen of the tetrahedral layer as inner-sphere complexes (ISC). However, no direct evidence of these complexes formation in brittle micas has been reported yet. In this contribution, we mainly focus on the understanding the mechanisms that provoke the formation of ISC in high charge swelling micas, Mica-n. A whole series of cations (X) were used to explore the influence of the charge and size of the interlayer cation. Three brittle swelling micas, Mica-n (n = 4, 3 and 2), were selected in order to analyze the influence of the layer charge in the formation of ISC. The contribution of the ISC has been analyzed thorough the evolution of the 060 reflection and the changes in the short-range order of the tetrahedral cations will be followed 29Si and 27Al MAS NMR. The results showed that ISC was favored in X-Mica-4 and that provoked a high distortion angle between the Si–Al tetrahedra. When the content of aluminum decreases, the electrostatic forces between the layers are relaxed, and the hydrated cations did not interact so strongly with the tetrahedral sheet, having the opportunity to complete their hydration sphere.

January, 2014 | DOI: 10.1021/jp4110695

Centro de Investigaciones Científicas Isla de la Cartuja. C/Américo Vespucio, 49 - 41092 Sevilla (España)
Tel.: [+34] 954489527 | Fax: [+34] 954460165 | buzon@icmse.csic.es