Menú secundario

Artículos SCI



2019


Phosphate-type supports for the design of WGS catalysts


Navarro-Jaen, S; Romero-Sarria, F; Centeno, MA; Laguna, OH; Odriozola, JA
Applied Catalysis B-Environmental, 244 (2019) 853-862

ABSTRACT

The importance of water availability during the WGS reaction has been extensively reported. Thus, the search of new supports able to interact with the water molecule is of great importance. In this work, a series of phosphate type supports containing Ce, Ca and Ti have been studied, demonstrating that water interaction with the support is closely related to the textural properties, surface composition and crystal structure of the solids. Additionally, DRIFTS results showed that different interaction mechanisms with the water molecule occur depending on the support. The system containing Ca dissociates the water molecule and interacts with it via the phosphate and Ca2+ ions. However, the Ce systems retain water in its molecular form, which interacts with the solids via hydrogen bonding with the phosphate groups. On the other hand, the Ti system experiences a loss of phosphorous, presenting a low degree of interaction with the water molecule. Additionally, the behavior of the supports with water has been successfully related to the WGS catalytic activity of the corresponding phosphate supported Pt catalysts.


Mayo, 2019 | DOI: 10.1016/j.apcatb.2018.12.022

Coupling of WO3 with anatase TiO2 sample with high {001} facet exposition: Effect on the photocatalytic properties


Lara, M.A.; Jaramillo-Páez, C.; Navío, J.A.; Sánchez-Cid, P.; Hidalgo, M.C.
Catalysis Today, 328 (2019) 142-148

ABSTRACT

A highly faceted {001} TiO2 catalyst was hydrothermally synthesized by using Ti(IV)-isopropoxide precursor with aqueous HF addition. WO3 was synthesized by following a reported method. Coupled TiO2-WO3 samples were synthesized by adding the corresponding amount of WO3 to fluorinated TiO2 gel followed by a hydrothermal treatment. Additionally the synthesized systems were characterized by using X-ray powder diffraction (XRD), X-ray fluorescence spectrometry (XRF), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS) and N2-adsorption (BET) for specific surface area determination. The photocatalytic activity of the single and coupled oxides was measured by means of three model reactions: the photo-oxidation of phenol (as a colourless substrate) and methyl orange (as a dye) and the photoreduction of Cr(VI) as K2Cr2O7. The coupling of WO3 with a highly faceted {001} TiO2 makes it possible to optimize the photocatalytic properties of the faceted material. In fact, {001} faceted TiO2 by itself presents a substantial improvement with respect to commercial TiO2(P25), as it can implement its photoactivity after the incorporation of WO3 with promising results, which can reduce the limitations of TiO2 in terms of its photoactivity, taking advantage of a higher percentage of solar radiation.


Mayo, 2019 | DOI: 10.1016/j.cattod.2018.11.012

BixTiyOz-Fe multiphase systems with excellent photocatalytic performance in the visible


Zambrano, P.; Navío, J.A.; Hidalgo, M.C.
Catalysis Today, 328 (2019) 136-141

ABSTRACT

New photocatalysts based on bismuth titanates doped with iron with outstanding visible photocatalytic activity were prepared by a facile hydrothermal method followed by incipient wetness impregnation. The starting material was composed by three phases; majority of Bi20TiO32 closely interconnected to Bi4Ti3O12 and amorphous TiO2. Fe doping increased the already very high visible activity of the original material. The high visible activity showed by these materials could be ascribed to a combination of several features; i.e. low band gap energy value (as low as 1.78 eV), a structure allowing a good separation path for visible photogenerated electron-holes pairs and a relatively high surface area. Fe doping could be acting as bonding paths for the bismuth titanates phases, and the amount of Fe on the surface was found to be a crucial parameter on the photocatalytic activity of the materials. Visible activity of the best photocatalyst was superior to UV-Activity of commercial TiO2 P25 used as reference in same experimental conditions.


Mayo, 2019 | DOI: 10.1016/j.cattod.2018.11.032

Liquid switchable radial polarization converters made of sculptured thin films


Oliva-Ramirez, M; Rico, VJ; Gil-Rostra, J; Arteaga, O; Bertran, E; Serna, R; Gonzalez-Elip, AR; Yubero, F
Applied Surface Science, 475 (2019) 230-236

ABSTRACT

A radial polarization converter is a super-structured optical retarder that converts a conventional linearly polarized light beam into a structured beam with radial or azimuthal polarization. We present a new type of these sophisticated optical elements, which is made of porous nanostructured sculptured single thin films or multilayers prepared by physical vapor deposition at an oblique angle. They are bestowed with an axisymmetric retardation activity (with the fast axis in a radial configuration). In particular, a Bragg microcavity multilayer that exhibits a tunable transmission peak in the visible range with a retardance of up to 0.35 rad has been fabricated using this methodology. Owing to the highly porous structure of this type of thin films and multilayers, their retardance could be switched off by liquid infiltration. These results prove the possibility of developing wavelength dependent (through multilayer optical design) and switchable (through vapor condensation or liquid infiltration within the pore structure) radial polarization converters by means of oblique angle physical vapor deposition.


Mayo, 2019 | DOI: 10.1016/j.apsusc.2018.12.200

3D core-multishell piezoelectric nanogenerators


A. Nicolas Filippin; Juan R.Sanchez-Valencia; Xabier Garcia-Casas; Victor Lopez-Flores; Manuel Macias-Montero; Fabian Frutos; Angel Barranco; Ana Borras
Nano Energy, 58 (2019) 476-483

ABSTRACT

The thin film configuration presents obvious practical advantages over the 1D implementation in energy harvesting systems such as easily manufacturing and processing, and long-lasting and stable devices. However, ZnO-based piezoelectric nanogenerators (PENGs) generally rely on the exploitation of single-crystalline nanowires because of their self-orientation in the c-axis direction and ability to accommodate long deformations resulting in high piezoelectric performance. Herein, we show an innovative approach to produce PENGs by combining polycrystalline ZnO layers fabricated at room temperature by plasma-assisted deposition with supported small-molecule organic nanowires (ONWs) acting as 1D scaffolds. Such hybrid nanostructures present convoluted core-shell morphology, formed by a single-crystalline organic nanowire conformally surrounded by a poly-crystalline ZnO shell and combine the organic core mechanical properties with the ZnO layer piezoelectric response. In a step forward towards the integration of multiple functions within a single wire, we have also developed ONW-Au-ZnO nanoarchitectures including a gold shell acting as inner electrode achieving output piezo-voltages up to 170 mV. The synergistic combination of functionalities in the ONW-Au-ZnO devices promotes an enhanced performance generating piezo-currents one order of magnitude larger than the ONW-ZnO nanowires and superior to the thin film nanogenerators for equivalent and higher thicknesses.


Abril, 2019 | DOI: 10.1016/j.nanoen.2019.01.047

Effect of support oxygen storage capacity on the catalytic performance of Rh nanoparticles for CO2 reforming of methane


Yentekakis, IV; Goula, G; Hatzisymeon, M; Betsi-Argyropoulou, I; Botzolaki, G; Kousi, K; Kondarides, DI; Taylor, MJ; Parlett, CMA; Osatiashtiani, A; Kyriakou, G; Holgado, JP; Lambert, RM
Applied Catalysis B-Environmental, 243 (2019) 490-501

ABSTRACT

The effects of the metal oxide support on the activity, selectivity, resistance to carbon deposition and high temperature oxidative aging on the Rh-catalyzed dry reforming of methane (DRM) were investigated. Three Rh catalysts supported on oxides characterized by very different oxygen storage capacities and labilities (gamma-Al2O3, alumina-ceria-zirconia (ACZ) and ceria-zirconia (CZ)) were studied in the temperature interval 400-750 degrees C under both integral and differential reaction conditions. ACZ and CZ promoted CO2 conversion, yielding CO enriched synthesis gas. Detailed characterization of these materials, including state of the art XPS measurements obtained via sample transfer between reaction cell and spectrometer chamber, provided clear insight into the factors that determine catalytic performance. The principal Rh species detected by post reaction XPS was Rh, its relative content decreasing in the order Rh/CZ(100%) > Rh/ACZ(72%) > Fth/gamma Al2O3(55%). The catalytic activity followed the same order, demonstrating unambiguously that Rh is indeed the key active site. Moreover, the presence of CZ in the support served to maintain Rh in the metallic state and minimize carbon deposition under reaction conditions. Carbon deposition, low in all cases, increased in the order Rh/CZ < Rh/ACZ < Rh/gamma-Al2O3 consistent with a bi-functional reaction mechanism whereby backspillover of labile lattice O2- contributes to carbon oxidation, stabilization of Rh and modification of its surface chemistry; the resulting O vacancies in the support providing centers for dissociative adsorption of CO2. The lower apparent activation energy observed with CZ-containing samples suggests that CZ is a promising support component for use in low temperature DRM.


Abril, 2019 | DOI: 10.1016/j.apcatb.2018.10.048

Tribological behavior of graphene nanoplatelet reinforced 3YTZP composites


Gutierrez-Mora, F; Morales-Rodriguez, A; Gallardo-Lopez, A; Poyato, R
Journal of the European Ceramic Society, 39 (2019) 1381-1388

ABSTRACT

The tribological behavior of graphene nanoplatelet (GNP) reinforced 3 mol% yttria tetragonal zirconia polycrystals (3YTZP) composites with different GNP content (2.5, 5 and 10 vol%) was analyzed and discussed. Their dry sliding behavior was studied using a ball-on-disk geometry with zirconia balls as counterparts, using loads between 2 and 20 N at ambient conditions and compared to the behavior of a monolithic 3YTZP ceramic used as a reference material. The composites showed lower friction coefficients and higher wear resistance than the monolithic 3YTZP. An outstanding performance was achieved at 10 N, where the friction coefficient decreased from 0.6 to 0.3 and the wear rates decreased 3 orders of magnitude in comparison with the monolithic ceramic. A layer adhered to the worn surface was found for all the composites, but it did not acted as a lubricating film. The composites with the lowest GNP content showed an overall improved tribological behavior.


Abril, 2019 | DOI: 10.1016/j.jeurceramsoc.2018.11.005

Laser-induced coloration of ceramic tiles covered with magnetron sputtered precursor layers


Rico, VJ; Lahoz, R; Rey-Garcia, F; de Francisco, I; Gil-Rostra, J; Espinos, JP; de la Fuente, GF; Gonzalez-Elipe, AR
Journal of the American Ceramic Society, 102 (2019) 1589-1598

ABSTRACT

This paper reports a new methodology for the coloring of glazed ceramic tiles consisting of the near infrared pulsed laser processing of copper containing oxide coatings prepared by magnetron sputtering. As a second approach, the employ for the same purpose of a novel laser furnace technique is also described. Changing the laser parameters and using the laser furnace to treat the tiles at high temperature during irradiation has resulted in a wide color palette. The optical characterization of the modified tiles by UV-Vis spectroscopy has been complemented with their microstructural and compositional analysis by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Time Of Flight Secondary Ion Mass Spectrometry (TOF-SIMS). The chemical composition of the surface was obtained by X-ray Photoemission Spectroscopy (XPS) and its structure determined by X?ray diffraction (XRD). The chemical resistance was characterized by several tests following the norm ISO 10545-13. Color changes have been attributed to surface microstructural and chemical transformations that have been accounted for by simple models involving different ablation, melting, diffusion, and segregation/agglomeration phenomena depending on the laser treatments employed.


Abril, 2019 | DOI: 10.1111/jace.16022

UV and visible-light driven photocatalytic removal of caffeine using ZnO modified with different noble metals (Pt, Ag and Au)


Vaiano, V.; Jaramillo-Paez, C.A.; Matarangolo, M.; Navío, J.A.; Hidalgo, M.C.
Materials Research Bulletin, 112 (2019) 251-260

ABSTRACT

In this work, ZnO photocatalyst was modified with different noble metals (Pt, Ag and Au) through photodeposition method and then characterized by different techniques (XRD, XRF, BET, UV–vis DRS, FESEM, and XPS). The addition of noble metals produces important changes in the light absorption properties with a significant absorbance in the visible region due to the existence of surface plasmon resonance (SPR) observed at about 450 nm and 550 nm for ZnO modified with Ag and Au, respectively. The morphology of the samples was studied by TEM and the size ranges of the different metals were estimated. Noble metal nanoparticles were in every case heterogeneously deposited on the larger ZnO particles. All the prepared photocatalysts were tested in the photocatalytic removal of caffeine (toxic and persistent emerging compound) under UV and visible light irradiation. It was observed an enhancement of photocatalytic caffeine removal from aqueous solutions under UV light irradiation with the increase of metal content (from 0.5 to 1 wt %) for ZnO modified with Ag and Au (Ag/ZnO and Au/ZnO). In particular, Ag/ZnO and Au/ZnO with higher Ag and Au content (1 wt %) allowed to achieve the almost complete caffeine degradation after only 30 min and a TOC removal higher than 90% after 4 h of UV light irradiation. These two photocatalysts were investigated also under visible light irradiation and it was found that their photocatalytic performances were strongly enhanced in presence of visible light compared to unmodified ZnO. In particular, Ag/ZnO photocatalyst was able to reach the complete caffeine degradation and a TOC removal of about 70% after 4 h of visible light irradiation.


Abril, 2019 | DOI: 10.1016/j.materresbull.2018.12.034

CuxCo3-xO4 ultra-thin film as efficient anodic catalysts for anion exchange membrane water electrolysers


Lopez-Fernandez, E; Gil-Rostra, J; Espinos, JP; Gonzalez-Elipe, AR; Yubero, F; de Lucas-Consuegra, A
Journal of Power Sources, 415 (2019) 136-144

ABSTRACT

CuxCo3-xO4 ultra-thin films, deposited by magnetron sputtering at oblique angles have been used as anodic catalysts in anion exchange membrane water electrolysers. It has been demonstrated that the used deposition procedure provides porous and amorphous samples with a strict control of the total catalyst load and Co/Cu ratio. Electrocatalytic tests showed a maximum performance for the oxygen evolution reaction at Co/Cu atomic ratio around 1.8. The optimized anodic catalyst presented a long-term stability confirmed by accelerated lifetime tests together with the chemical surface analysis of the used samples. The effect of the crystallization of a single layer CuxCo3-xO4 and a multilayer (CuO/Co3O4)(n) anodic catalyst samples was also investigated. The observed loss of catalytic performance found in both cases may prove that a particular local chemical environment around the Co and Cu sites acts as an efficient catalytic site for the oxygen evolution reaction. A catalyst film with the optimum Co/Cu atomic ratio was incorporated into a Membrane Electrode Assembly, using a sputtered Ni film as cathode. Current density values up to 100 mA cm(-2) at 2.0 V were obtained in 1.0 M KOH electrolyte. Upon normalization by the amount of catalyst, this performance is one of the highest reported in literature.


Marzo, 2019 | DOI: 10.1016/j.jpowsour.2019.01.056

Promoting effect of CeO2, ZrO2 and Ce/Zr mixed oxides on Co/gamma-Al2O3 catalyst for Fischer-Tropsch synthesis


Garcilaso, V; Barrientos, J; Bobadilla, LF; Laguna, OH; Boutonnet, M; Centeno, MA; Odriozola, JA
Renewable Energy, 132 (2019) 1141-1150

ABSTRACT

A series of cobalt-based catalysts have been synthesized using as support gamma-Al2O3 promoted by ceria/zirconia mixed oxides with a variable Ce/Zr molar ratio. The obtained catalysts demonstrated oxide promotion results in the protection of the major textural properties, especially for Zr-rich solids. Reducibility of cobalt species was enhanced by the presence of mixed oxides. The chemical composition of the oxide promoter influenced not only physicochemical properties of final catalysts but also determined their performance during the reaction. In this sense, Zr-rich systems presented a superior catalytic performance both in total conversion and in selectivity towards long chain hydrocarbons. The observed Zr-promotion effect could be explained by two significant contributions: firstly, the partial inhibition of Co-Al spinel compound formation by the presence of Zr-rich phases which enhances the availability of Co actives site and secondly, Zr-associate acidic sites promote higher hydrocarbons selectivity.


Marzo, 2019 | DOI: 10.1016/j.renene.2018.08.080

Combining dietary phenolic antioxidants with polyvinylpyrrolidone: transparent biopolymer films based on p-coumaric acid for controlled release


Contardi, M; Heredia-Guerrero, JA; Guzman-Puyol, S; Summa, M; Benitez, JJ; Goldoni, L; Caputo, G; Cusimano, G; Picone, P; Di Carlo, M; Bertorelli, R; Athanassioua, A; Bayer, IS
Journal of Materials Chemistry B, 7 (2019) 1384-1396

ABSTRACT

Polyvinylpyrrolidone (PVP) has probably been one of the most utilized pharmaceutical polymers with applications ranging from a blood plasma substitute to nanoparticle drug delivery, since its synthesis in 1939. It is a highly biocompatible, non-toxic and transparent film forming polymer. Although high solubility of PVP in aqueous environment is advantageous, it still poses several problems for some applications in which sustained targeting and release are needed or hydrophobic drug inclusion and delivery systems are to be designed. In this study, we demonstrate that a common dietary phenolic antioxidant, p-coumaric acid (PCA), can be combined with PVP covering a wide range of molar ratios by solution blending in ethanol, forming new transparent biomaterial films with antiseptic and antioxidant properties. PCA not only acts as an effective natural plasticizer but also establishes H-bonds with PVP increasing its resistance to water dissolution. PCA could be released in a sustained manner up to a period of 3 days depending on the PVP/ PCA molar ratio. Sustained drug delivery potential of the films was studied using methylene blue and carminic acid as model drugs, indicating that the release can be controlled. Antioxidant and remodeling properties of the films were evaluated in vitro by free radical cation scavenging assay and in vivo on a murine model, respectively. Furthermore, the material resorption of films was slower as PCA concentration increased, as observed from the in vivo full-thickness excision model. Finally, the antibacterial activity of the films against common pathogens such as Escherichia coli and Staphylococcus aureus and the effective reduction of inflammatory agents such as matrix metallopeptidases were demonstrated. All these properties suggest that these new transparent PVP/ PCA films can find a plethora of applications in pharmaceutical sciences including skin and wound care.


Marzo, 2019 | DOI: 10.1039/c8tb03017k

Anisotropic lattice expansion determined during flash sintering of BiFeO3 by in-situ energy-dispersive X-ray diffraction


Wassel, MAB; Perez-Maqueda, LA; Gil-Gonzalez, E; Charalambous, H; Perejon, A; Jha, SK; Okasinski, J; Tsakalakos, T
Scripta Materialia, 162 (2019) 286-291

ABSTRACT

BiFeO3 has a Curie temperature (T-c) of 825 degrees C, making it difficult to sinter using conventional methods while maintaining the purity of the material, as unavoidably secondary phases appear at temperatures above T-c Flash sintering is a relatively new technique that saves time and energy compared to other sintering methods. BiFeO3 was flash sintered at 500 degrees C to achieve 90% densification. In-situ energy dispersive X-ray diffraction (EDXRD) revealed that the material did not undergo any phase transformation, having been sintered well below the Tc. Interestingly, anisotropic lattice expansion in the material was observed when the sample was exposed to the electric field. 


Marzo, 2019 | DOI: 10.1016/j.scriptamat.2018.11.028

Microstructure, interfaces and properties of 3YTZP ceramic composites with 10 and 20 vol% different graphene-based nanostructures as fillers


Munoz-Ferreiro, C; Morales-Rodriguez, A; Rojas, TC; Jimenez-Pique, E; Lopez-Pernia, C; Poyato, R; Gallardo-Lopez, A
Journal of Alloys and Compounds, 777 (2019) 213-224

ABSTRACT

The graphene family comprises not only single layer graphene but also graphene-based nanomaterials (GBN), with remarkably different number of layers, lateral dimension and price. In this work, two of these GBN, namely graphene nanoplatelets (GNP) with n similar to 15-30 layers and few-layer graphene (FLG) with n < 3 layers have been evaluated as fillers in 3 mol% yttria stabilized tetragonal zirconia (3YTZP) ceramic composites. Composites with 10 and 20 vol% GNP or FLG have been fabricated by wet powder processing and spark plasma sintering (SPS) and the influence of the content and number of layers of the graphene-based filler has been assessed. For both graphene-based fillers, an intermediate zirconia oxycarbide has been detected in the grain boundaries. The lower stacking degree and much more homogeneous distribution of the FLG, revealed by transmission electron microscopy (TEM), can improve load transfer between the GBNs and the ceramic matrix. However, high FLG contents lower densification of the composites, due partly to the larger FLG interplanar spacing also estimated by TEM. The hardness (both Vickers and nanoindentation) and the elastic modulus decrease with increased GBN content and with improved graphene dispersion. The FLG greatly inhibit the crack propagation that occur perpendicular to their preferential orientation plane. The composites with thinner FLG have higher electrical conductivity than those with GNP. The highest electrical conductivity is achieved by composites with 20 vol% FLG in the direction perpendicular to the compression axis during sintering, sigma(perpendicular to) = 3400 +/- 500 Sm-1. 


Marzo, 2019 | DOI: 10.1016/j.jallcom.2018.10.336

Sample-Controlled analysis under high pressure for accelerated process studies


Perejon, A; Sanchez-Jimenez, PE; Soria-Hoyo, C; Valverde, JM; Criado, JM; Perez-Maqueda, LA
Journal of the American Ceramic Society, 102 (2019) 1338-1346

ABSTRACT

The potential of controlled rate thermal analysis (CRTA) for studying high-pressure gas-solid processes has been evaluated. CRTA is a type of smart temperature program based on a feedback system that uses any experimental signal related to the process evolution for commanding the temperature evolution. In this work, an instrument that uses the gravimetric signal for CRTA control has been designed and used for the study of two high-pressure gas-solid reactions: the highly exothermic thermal oxidation of TiC under high pressure of oxygen and the reduction in Fe2O3 under high pressure of hydrogen. Advantages of CRTA for discriminating overlapping processes and appraising kinetic reaction mechanisms are shown.


Marzo, 2019 | DOI: 10.1111/jace.15960

A theoretical study of the bonding capabilities of the zinc-zinc double bond


Ayala, R; Galindo, A
International Journal of Quantum Chemistry, 119 (2019) e25823

ABSTRACT

The theoretical knowledge about the zinc-zinc bond has been recently expanded after the proposal of a zinc-zinc double bond in several [Zn-2(L)(4)] compounds (Angew. Chem. Int. Ed.2017, 56, 10151-10155). Prompted by these results, we have selected the [Zn-2(CO)(4)] species, isolobally related to ethylene, and theoretically investigated the possible (2)-Zn-2-coordination to several first-row transition metal fragments. The [Zn-2(CO)(4)] coordination to the metal fragment produces an elongation of the dizinc bond and a concomitant pyramidalization of the [Zn(CO)(2)] unit. These structural parameters are indicative of -backdonation from the metal to the coordinated dizinc moiety, as occurred with ethylene ligand. A quantum theory of atoms in molecules study of the ZnZn bond shows a decrease of (BCP), delta(2)(BCP) (ZnZn) and delocalization indexes (Zn,Zn), relative to corresponding values in the parent [Zn-2(CO)(4)] molecule. The ZnZn and MZn bonds in these [((2)-Zn-2(CO)(4))M(L)(n)] complexes can be described as shared interactions with an important covalent component where the ZnZn bond is preserved, albeit weakened, upon coordination.


Marzo, 2019 | DOI: 10.1002/qua.25823

Synthesis of sol-gel pyrophyllite/TiO2 heterostructures: Effect of calcination temperature and methanol washing on photocatalytic activity


El Gaidoumi, A.; Doña Rodríguez, J.M.; Pulido Melián, E.; González-Díaz, O.M.; Navío Santos, J.M.; El Bali, B.; Kherbeche, A.
Surfaces and Interfaces, 14 (2019) 19-25

ABSTRACT

We successfully synthesized an efficient photoactive pyrophyllite/TiO2 heterostructures using a sol-gel route at ambient temperature. The samples were prepared by exfoliation of a pyrophyllite layered-type clay by TiO2. The prepared samples exhibited strong photocatalytic activity for the degradation of phenol. The heterostructure PTi750 (SBET = 16.58 m2/g) calcined at 750 °C, in which the mixed phases of anatase and rutile exist (52.2% anatase/10.7% rutile), showed the highest photocatalytic activity against commercial TiO2Aeroxide P25. The methanol washed PTi750 was 5 times faster than the corresponding unwashed sample; phenol was totally degraded with a TOC reduction of 89.2%. The materials have been characterized by: X-ray diffraction (XRD), Diffuse reflectance UV–vis spectrophotometry (UV–Vis DRS), scanning electron microscopy (SEM) and BET specific surface area.


Marzo, 2019 | DOI: 10.1016/j.surfin.2018.10.003

XPS primary excitation spectra of Zn 2p, Fe 2p, and Ce 3d from ZnO, α‐Fe2O3, and CeO2


Pauly, N.; Yubero, F.; Espinós, J.P.; Tougaard, S.
Surface and Interface Analysis, 51 (2019) 353-360

ABSTRACT

Metal oxides are important for current development in nanotechnology. X‐ray photoelectron spectroscopy(XPS) is a widely used technique to study the oxidation states of metals, and a basic understanding of the photoexcitation process is important to obtain the full information from XPS. We have studied core level excitations of Zn 2p, Fe 2p, and Ce 3d photoelectron emissions from ZnO, α‐Fe2O3, and CeO2. Using an effective energy‐differential XPS inelastic‐scattering cross section evaluated within the semiclassical dielectric response model for XPS, we analysed the experimental spectra to determine the corresponding primary excitation spectra, ie, the initial excitation processes. We find that simple emission (Zn 2p) as well as complex multiplet photoemission spectra (Fe 2p and Ce 3d) can be quantitatively analysed with our procedure. Moreover, for α‐Fe2O3, it is possible to use the software package CTM4XAS (Charge Transfer Multiplet program for X‐ray Absorption Spectroscopy) to calculate its primary excitation spectrum within a quantum mechanical model, and it was found to be in good agreement with the spectrum determined by analysis of the experiment.


Marzo, 2019 | DOI: 10.1002/sia.6587

Eu3+ Luminescence in High Charge Mica: An In Situ Probe for the Encapsulation of Radioactive Waste in Geological Repositories


Martin-Rodriguez, R; Aguado, F; Alba, MD; Valiente, R; Perdigon, AC
ACS Applied Materials & Interfaces, 11 (4) (2019) 7559-7565

ABSTRACT

Isolation of high-level radioactive waste (HLW) in deep geological repositories (DGR) through a multibarrier concept is the most accepted approach to ensure long-term safety. Clay minerals are one of the most promising materials to be used as engineered barriers. In particular, high charge micas, as components of the engineered barrier, show superselectivity for some radioactive isotopes and a large adsorption capacity, which is almost twice that of the other low charge aluminosilicates. In addition, high charge micas are optimum candidates for decontamination of nuclear waste through two different mechanisms; namely an ion exchange reaction and a nonreversible mechanism involving the formation of new stable crystalline phases under hydrothermal conditions. In this work, we report a new in situ optical sensor based on the incorporation of Eu3+ in these high charge micas for tracking the long-term physical-chemical behavior of HLW contaminants in DRG under mild hydrothermal conditions. The incorporation of Eu3+ into the interlayer space of the mica originates a well resolved green and red luminescence, from both the 5D1 and 5D0 excited states, respectively. The formation of new crystalline phases under hydrothermal conditions involves important changes in the Eu3+ emission spectra and lifetime. The most interesting features of Eu3+ luminescence to be used as an optical sensor are (1) the presence or absence of the Eu3+ green emission from the 5D1 excited state, (2) the energy shift of the 5D0 → 7F0 transition, (3) the crystal-field splitting of the 7F1 Eu3+ level, and (4) the observed luminescence lifetimes, which are directly related to the interaction mechanisms between the lanthanide ions and the silicate network.


Febrero, 2019 | DOI: 10.1021/acsami.8b20030

Mechanism of Photoluminescence Intermittency in Organic-Inorganic Perovskite Nanocrystals


Galisteo-Lopez, JF; Calvo, ME; Rojas, TC; Miguez, H
ACS Applied Materials & Interfaces, 11 (4) (2019) 6344-6349

ABSTRACT

Lead halide perovskite nanocrystals have demonstrated their potential as active materials for optoelectronic applications over the past few years. Nevertheless, one issue that hampers their applicability has to do with the observation of photoluminescence intermittency, commonly referred to as "blinking", as in their inorganic counterparts. Such behavior, reported for structures well above the quantum confinement regime, has been discussed to be strongly related to the presence of charge carrier traps. In this work, we analyze the characteristics of this intermittency and explore the dependence on the surrounding atmosphere, showing evidence for the critical role played by the presence of oxygen. We discuss a possible mechanism in which a constant creation/annihilation of halide-related carrier traps takes place under light irradiation, with the dominant rate being determined by the atmosphere.


Febrero, 2019 | DOI: 10.1021/acsami.8b17122

Páginas

icms