Menú secundario

Research Projects

Development of catalysts and supports for CO2 neutral chemical energy storage processes based on liquid organic hydrogen carriers




Research head: María Asunción Fernández Camacho
Period: 1-1-2019 / 31-12-2021
Financial source: Ministerio de Ciencia, Innovación y Universidades
Code: RTI2018-093871-B-I00
Research group: María del Carmen Jiménez de Haro

Abstract [+]

TIle depletion of fossil fuels (in short and long term) and the global warming derived from greenhouse eHect are consequences of the extensive use of these fuels. It is therefore highly desirable to use and develop renewable energies and so eliminate our dependence on fossil tuels. This makes the storage of energy produced by renewable sources (which are ¡ntermittent) an important target. In previous projects we have been working in the study of nanomaterials and catalysts for the storage of hydrogen as a vector of energy transport and storage (H2 cycle). In this new project the research group propose to move into the implementatlon of the liquid organic hydrogen carriers (LOHC) as a promising way of comblning the C02 and de H2 cycles leading to a sustainable energy storage in a carbon neutral cycle.
Small organic molecules, IIke formic acid or methanol, can be used to store the H2 (and energy) coming from renewable sources. These alternative fuels can be combusted themselves or be used to generate H2 directly feeding a fuel cell.
Research will be conducted in this project to the implementation of two processes related to the LOHC technologies:
i) The selective low temperature decomposition of formic acid by heterogeneous catalysis to the on-demand production of carbon monoxide free hydrogen.
ii) The hydrogen production by reforming of alcohols (i.e. biomethanol) in heterogeneous photocatalytic processes.
Catalysis is playing the key role in the implementation of these Iwo processes. Therefore the main objectives and activities in the project are the rational design and preparation of catalysts and supports to study composition-structure-performance relationships for the two aboye mentioned processes. The innovative approach is the application of plasma assisted techniques, like the magnetron sputtering for
thin film growth, as well as plasma treatments of oxidation, reduction and etchlng for the development of nanostructured catalytic coatings and supported nanoparticles. Porous carbon foams supports and Pd based catalysts including Pd, Pd-C, Pd-B or Pd-Cu will be developed for the study of the formic acid decomposition reaction. Ti02-TiOx photocatalytic films with Pt (and/or gold) as co-catalysts will be
investlgated for the photo-reforming 01 methanol.


Development of supported catalysts on porous structures for hydrogen generation and catalytic combustion applications in the framework of renewable energies




Research head: Asunción Fernández Camacho
Period: 01-01-2016 / 31-12-2018
Financial source: Ministerio de Economía y Competitividad
Code: CTQ2015-65918-R
Research group: Asunción Fernández, Mª Carmen Jiménez de Haro, Vanda Godinho, Gisela Arzac, Dirk Hufschmidt, Rocio García

Abstract [+]

The depletion of fossil fuels (in a short and long term) and the global warming derived from greenhouse effect are consequences of the extensive use of these fuels. In this context, hydrogen appears as an attractive, clean and abundant energy carrier in the context of a wider use of clean and removable energies. For the implementation of the “hydrogen economy” many technological challenges regarding hydrogen production (free from CO2), transport, storage (in a safe manner) and combustion (to produce heat or electricity) should be met first. New research will be conducted in this project on the basis of our previous results regarding the study of complex hydrides for hydrogen storage and the development of catalysts and processes for hydrogen generation and use in portable applications. In particular, new catalysts will be developed on porous structures such as polymeric, metallic and ceramic membranes and/or foams with high actual interest.  Catalysts will we developed and studied for hydrogen generation and combustion reactions according to the following research lines:

1) Development of new materials (catalysts and supports) with a high added value of the complete system catalyst + support. Porous Ni and SiC foams together with PTFE membranes will be selected as supports for the studies. The main objective is to design new catalysts on technologically interesting supports such as separating membranes, electrolytes, electrodes and/or hydrogen combustors. These new catalysts will be developed following the objective of reducing the amount of noble metals by combining or replacing with another non-noble metals (e.g. Pt-Cu and Ni-Fe) and/or with metalloids (e.g carbides, borides, etc). Wet impregnation methods will be used and special emphasis will be put on the use of the PVD methodology (magnetron sputtering) recently employed in our laboratory for the fabrication of Co thin films with very good results. The latter methodology opens a highly interesting research field because permits to tune microstructure and composition (i.e. Co, Co-B, Co-C) on demand.

2) Characterization of the prepared materials from a microstructural and chemical point of view. Modern nanoscopies will play a key role in the characterization, comprehension and further improvement of these highly nanostructured catalysts.

3) Catalytic studies on the prepared materials will be carried out in three catalytic tests: i) the hydrogen generation through hydrolysis reactions, ii) the photocatalytic water splitting, and iii) the catalytic hydrogen combustion. These reactions are of high interest in the context of the hydrogen economy.

--The interaction of these three research lines as proposed in this project will permit to achieve basic knowledge on the rational design of nanocatalysts supported on porous materials. Structure-composition-activity relationships will be established through catalytic and photo-catalytic studies in combination with characterization techniques based on high resolution analytical TEM and additional spectroscopic techniques.


Application of advanced electron microscopy techniques to the characterization of nanostructured coatings for clean energy applications




Research head: Ana María Beltrán Custodio
Period: 01-03-2015 / 28-02-2017
Financial source: Junta de Andalucía
Code: TAHUB-050. Programa Talent HUB
Research group:

Abstract [+]

This project is focus on the hydrogen generation and storage with the aim of producing hydrogen for clean and sustainable energies. It happens due to an exothermic reaction where a catalyst is required to do so safety. Catalysts based on noble metals are good candidates for this purpose such as, cobalt, cupper… Here, the complete catalysts systems and different supports are studied. They have been grown by magnetron sputtering technology. The structure and composition are studied, up to nano-scale, by advanced scanning-transmission electron microscopy techniques, (S)TEM, such as high-resolution (HRTEM), high-angle annular dark field (HAADF), energy dispersive X‑Ray (EDX), electron energy loss spectroscopy (EELS), for chemical analysis. Furthermore, the use of the three-dimensional characterization technique electron-tomography provides a full understanding of the analysed material. The combination of structural and compositional analytical microscope techniques, in both STEM and TEM mode, allows a full nano-characterization of the systems. The (S)TEM analyses are the essential tool to determine the relationship among the microstructure, the growth conditions and the final behaviour and properties of the systems which will help to improve them and, therefore, to contribute to the production of clean energy.

This project has four main strategic objectives:

1. Nano-materials for sustainable energy applications. Materials for the production, use and storage of Hydrogen.
2. Development of sputtering technology for the fabrication of nanostructures (thin films, coatings and controlled microstructure multilayers).
3. Development of the potential capabilities of the Laboratory for Nanoscopies and Spectroscopies (LANE).
4. Use of advanced structural and analytical techniques for the nano-analysis of new nanomaterials.


Development of processes for the catalytic combustion of hydrogen and study of the integration in devices for portable applications




Research head: Asunción Fernández Camacho
Period: 16-05-2014 / 15-05-2016
Financial source: Junta de Andalucía
Code: P12-TEp-862
Research group: Julián Martínez, Gisela Arzac, Dirk Hufschmidt, Joaquín Ramírez, M.Carmen Vera, Vanda Godinho, Lionel Cervera, T.Cristina Rojas, Olga Montes, Mariana Paladini, Jaime Caballero-Hernández

Abstract [+]

Hydrogen is an attractive candidate as a vector for storage and transport of energy in the context of an increased use of renewable and clean energies. The production and use of energy based on hydrogen technology is particularly important for small-scale portable (and potentially scalable for stationary) applications. In this project the process of catalytic (controlled) combustion of hydrogen will be investigated in the various aspects that could lead to a final integrated configuration with a H2 generation system for portable applications. For that the project will take advantage of the synergy of integrating two researcher groups from the PAI: i) The TEP217 group, specialists in storage and generation of hydrogen based on metal hydrides, complex hydrides and hydride composites reactive systems; and in the use of catalysts and additives to control and improve the kinetics of these processes. ii) The FQM342, specialist group for the fabrication of porous ceramics of high interest as catalyst supports for harsh combustion environments. Further collaboration is completed with the participation of the company Abengoa Hidrógeno SA that will be involved as sub-contractor as specialist in systems for the production and storage of hydrogen.
In particular we will work on this project in the following lines:
1.- Development of catalysts and supports for catalytic combustion. Typically porous biomorphic silicon carbide ceramics and classic noble metal catalysts, as well as new low cost catalysts to be developed in the project.
2.- Development of reactors needed for the study of the catalytic combustion. Typically hydrogen flows from a few ml/min to the scale of a H2 generator already available in the range 0.5 to 1.5 L/min.
3.- Coupling the catalytic combustion system with a portable hydrogen generation systems that we have developed in previous projects.
4.- Application of the sputtering technology in an exploratory manner in this project to deposit the catalyst materials for the H2 catalytic combustion on porous substrates.
5.- Microstructural and chemical characterization of the supports and catalysts in the nanoscale to follow the procedures of synthesis and evolution in operation.

 


Development of novel materials and processes for the generation and use of hydrogen mainly in portable applications




Research head: Asunción Fernández Camacho
Period: 01-01-2013 / 31-12-2015
Financial source: Ministerio de Economía y Competitividad
Code: CTQ2012-32519
Research group: Gisela Arzac, Jaime Caballero, Lionel Cervera, Vanda Fortio, Carlos Negrete, Dirk Hufschmidt, Cristina Rojas Ruiz, Roland Schierholz

Abstract [+]

Hydrogen as a vector of transport and storage of energy is a very attractive candidate in the context of increased use of renewable and clean energies. This project will address the study of the different processes that lead to the final configuration of an integrated systems for hydrogen generation and use mainly in portable applications (and potentially scalable for stationary applications). In particular, work will be carried out in this project in the following lines:
a) Research on new lightweight compounds for use in hydrogen generation processes on a small scale by chemical routes (hydrolysis). Typically hydrolysis reactions of borohydrides (i.e. NaBH4) and compounds like ammonia borane, hydrazine borane or hydrazine. This line includes the development of catalysts at the nanoscale using wet chemical methods for their synthesis: Metal-metalloid nanostructures (i.e. Co-B, Co-B-P and similar ones) and bimetallic catalysts (including or not metalloid) of low cost which potentiate synergistic effects (i.e. CoRu, NiPt or Co-Ru-B). The topic also includes the development of portable reactors for these processes and the development of new substrates and monoliths, studies of adherence and durability of the catalyst.
b) Research on new host-guest systems containing hydrogen for reversible storage (loading / unloading). Mainly porous supports (host) like the so called "nanoscaffolds" (based on C or BN) infiltrated with borohydrides materials (guest) (i.e. titanium borohydride) typically used for reversible hydrogen storage. These new materials must present improved charging and de-charging kinetics.
c) Studies of coupling a hydrogen generator system with a low cost fuel cell. Typically a continuous reactor for the hydrolysis of NaBH4 with Co-B catalyst for providing H2 at constant flow rate conditions to directly feed a PEM fuel cell of 60 W.
d) Fundamental studies for the development of catalysts and supports for the controlled combustion of hydrogen. It's a new line in the research group based on wet chemical preparation of noble metal nanoparticle catalysts on commercial porous ceramic supports (i.e. SiC). The line also includes the design of a reactor for laboratory-scale study of heat production by controlled combustion of hydrogen.
e) Development of sputtering technology ("magnetron sputtering") for the preparation of catalysts and nano-structures on various substrates for use in the processes developed in the previous sections. The group has extensive experience in this technology to be applied in novel ways in this project leading to a great versatility regarding nanostructure, composition and addition of additives to improve catalytic activity, durability and selectivity of catalysts.
f) Microstructural and chemical characterization of new materials and catalysts developed in the project. We are dealing typically with materials of controlled nanostructure where modern nanoscopic techniques will play a key role in the custom manufacturing of these materials

 


Development of nanostructured protective coatings for extreme environmental conditions (NANOPROTEXT)




Research head: Juan Carlos Sánchez López
Period: 01-01-2012 / 31-12-2014
Financial source: Ministerio de Ciencia e Innovación
Code: MAT2011-29074-C02-01
Research group: T. Cristina Rojas Ruiz; Francisco Javier Pérez Trujillo;Maria del Pilar Hierro de Bengoa;Germán Alcalá Penades; Maria Sonia Mato Díaz; Marta Brizuela; Pablo Corengia; José Luis Viviente; Alberto García;Daniel González

Abstract [+]

In many industrial operations, the machines or tool components in contact are submitted to severe conditions of load, friction, temperature or variable atmosphere. The research efforts are directed towards the development of new multiphase coatings capable to increase their performance by protection of the surface against wear and oxidation that cause failure mechanisms. By appropriate control of the size and distribution of phases, chemical composition and microstructure in the nanometric regime it is possible to obtain multifunctionality as low friction, hardness and thermal stability. To achieve excel in this purpose it is necessary to correlate the macroscopic properties of these coated surfaces (mechanical, tribological, oxidation resistance) with these basic phenomena.

In this project, three types of nanostructured coatings will be prepared using a magnetron sputtering process for protection in running operations under extreme or singular conditions (pressure, temperature, oxidant atmospheres, vacuum, etc.). The chosen systems are constituted by crystals of hard materials (nitrides or carbides) in combination with a second element or phase that improves the practical performance. Thus, nanocomposite coatings consisting of WC nanocrystals dispersed in an amorphous dichalcogenide phase (WS2 or WSe2) are proposed as solid lubricant coatings to run under high vacuum conditions useful for spatial applications or inert environments. In the second case, Y or Zr will be tested as dopant elements in CrAlN coatings with the aim of increasing the corrosion and oxidation resistance and tribological behaviour useful for many industrial fields (machining tools, metallurgy, aeronautic, automotive, etc…). Finally, hard and transparent nanocomposite coatings based on the Al-Si-N system are suggested as protective coatings for optical systems.

In all cases, the project comprises their synthesis, chemical and structural characterization, and validation in tribological and oxidation under extreme condition tests that simulate the final operation conditions. In the case of the hard and transparent coatings, their optical properties will be also analysed. The establishment of the relationships between microstructure and measured properties will be an essential objective, since it enables the better understanding of the action mechanisms, and thus, the optimisation of such nanostructured multifunctional systems for an improved technological benefit.

 


Advanced laboratory for the nano-analysis of novel functional materials (AL-NANOFUNC)




Research head: María Asunción Fernández Camacho
Period: 01-10-2011 / 30-03-2015
Financial source: Unión Europea
Code: REGPOT-CT-2011-285895
Research group: T. Cristina Rojas, M.Carmen Jiménez, Gisela Arzac, Olga Montes, Inmaculada Rosa, Rafael Alvarez, Vanda Godinho, Juan Carlos Sánchez-López, Hernán Míguez, Agustín R. González-Elipe, Manuel Ocaña, M. Jesús Sayagués, Lionel Cervera, Roland Schierholz, Salah Rouillon, Lucia Castillo, Rocío García, Carlos García-Negrete, Jaime Caballero

Abstract [+]

The AL-NANOFUNC project has been designed to install and fully develop at the Materials Science Institute of Seville (ICMS, CSIC-Univ.Seville, Spain) an advanced laboratory for the Nano-analysis of novel functional materials. Advanced Nanoscopy facilities, based on latest generation electron microscopy equipments, will be devoted to breakthrough research in specific topics of high interest: i) Nanomaterials for sustainable energy applications; ii) protective and multifunctional thin film and nanostructured coatings; iii) nanostructured photonic materials and sensors. To take the ICMS laboratories to a leading position that is competitive in a world-wide scenario, the AL-NANOFUNC project is contemplated to up-grade the actual research potential in several directions: i) improve equipment capabilities regarding the Analytical High Resolution Electron Microscopy facilities; ii) improve the impact and excellence of basic research through hiring of experienced researchers and transnational exchange with the reference centers in Europe; iii) develop and improve the innovation potential of the ICMS’s research by opening the new facilities to companies and stakeholders; iv) organize workshops and conferences, dissemination and take-up activities to improve research visibility. Close collaborations with reference centers and companies in Liège (Belgium), Graz (Austria), Jülich (Germany), Oxford (England), Cambridge (England), Dübendorf (Switzerland) and Rabat (Morocco), as well as with laboratories at Andalucian Universities, are foreseen in this project. Five companies in Andalusia will also collaborate in close synergies to promote the long-term strategic lines of interest for the region in the natural and artificial stone products and solar and renowable energy sectors.


Nanostructured films for operating under vacuum




Research head: Juan Carlos Sánchez López
Period: 01-10-2011 / 31-12-2011
Financial source: Ministerio de Ciencia e Innovación
Code: MAT2010-21597-C02-01
Research group: T. Cristina Rojas Ruiz, Santiago Domínguez Meister

Abstract [+]

In this project, nanostructured coatings will be prepared using a magnetron sputtering process for lubrication of mechanical components used in aerospace applications. These materials must provide wear protection and low friction when operating in ambient air or vacuum environment. The chosen systems to obtain this compromise are constituted by WC nanocrystals dispersed in an amorphous dichalchogenide phase (WS2 or WSe2). These solid lubricant coatings are proposed to enhance the wear resistance, mechanical strength and oxidation resistance in comparison to their conventional MoS2 or DLC coatings for this kind of applications.


Development of carbon-based composites for biomedical applications




Research head: Juan Carlos Sánchez López
Period: 15-03-2011 / 15-03-2014
Financial source: Junta de Andalucía
Code: P10-TEP 06782
Research group: T. Cristina Rojas, Carlos López Cartes, David Abad, Vanda Godinho, Santiago Domínguez, Inmaculada Rosa

Abstract [+]

This project pursues the development of carbon-based coatings including the tailored synthesis, characterization, evaluation in wear tests and biocompatibility study for the application in artificial implants. The control of the carbon chemical bonding (sp2/sp3) and the chemical composition, including metals as (Ag, Ti) or other elements (B, N, O) will enable to tune the mechanical and tribological properties (hardness, friction and wear resistance) with the aim of improving the final performance. To achieve this goal, the use of magnetron sputtering technique is envisaged to deposit advanced coatings under different synthesis conditions. Next, these carbon composites will be evaluated comparatively in friction and wear tests that simulate the conditions that these materials will face in the final application. In this way, it will be possible to establish the correlation between the observed behavior and chemical and structural characteristics of the prepared layers in cell adhesion tests, cytotoxicity and antibacterial activity. This complete characterization will provide an excellent overview of the possibilities of technological transfer of these advanced materials to the biomedicine.


Functionalized for hypethermia applications and evaluation of ecotoxicity




Research head: Asunción Fernández Camacho
Period: 03-02-2010 / 02-02-2013
Financial source: Junta de Andalucía
Code: P09-FQM-4554
Research group: J. Blasco, M. Hampel, Carlos López, L.M. Lubián, I. Moreno, Miguel Angel Muñoz, David Philippon, T. Cristina Rojas, Inmaculada Rosa, Carlos García-Negrete

Abstract [+]

This Excellence project is taking profit of the previous experience of the group TEP-217 in the development and characterization of functionalized biocompatible nanoparticles and potentially trying to advance in four directions. a) Continue with the development of nanoparticle based mainly on Au, Ag and magnetic oxides with different functionalizations and microstructure. b) To deepen the physical-chemical interaction with electromagnetic fields (in a wide range of frequencies from kHz to GHz) to produce local heating. Currently, various mechanisms have been proposed (Eddy current, hysteresis, relaxation of magnetic moments and Brownian motion) without enough data yet existing to understand and interpret the experimental results. c) Establish a multidisciplinary collaboration with the group RNM-306, a specialist in ecotoxicity testing, to improve the knowledge of the environmental impact of nanoparticles (mainly gold and silver) in marine ecosystems, which are the ultimate sink for a good part of nanomaterials currently produced. d) Conduct preliminary studies of the toxicity of nanoparticles as a function of applied magnetic field. In any project dedicated to nanotechnology is extremely valuable to introduce studies to determine the toxicological and environmental impact of new materials being developed at present. A key objective of this project is the training of research personnel through the implementation of one doctoral thesis at the Institute of Materials Science of Seville.


Role of additives in the reactive hydride composite systems for hydrogen storage




Research head: Asunción Fernández Camacho
Period: 01/01/2010 - 31/12/2012
Financial source: Ministerio de Educación y Ciencia
Code: CTQ2009-13440
Research group: Carlos López, Cristina Rojas Ruiz, Gisela Arzac, Dirk Hufschmidt, Raimondo Ceccini, Emilie Deprez

Abstract [+]

Due to the expected short-medium term exhaustion of fossil fuels and due to clime changes produced by the green house effect, it is necessary to reconsider a new global energy policy. Hydrogen, as a vector for energy storage and transport, is an attractive candidate for a clean handling of energy. In the present project it is proposed the study of the so called reactive hydride composite systems (RHC) for hydrogen storage. These systems are based in the coupling of a single metal hydride (i.e. MgH2) with a complex hydride (typically a borohydride compound, i.e LiBH4) to give a reversible reaction that is producing or consuming hydrogen. The system can so be used as a hydrogen storage material according to following reaction: MgH2+2LiBH4 ↔ MgB2+LiH+4H2 (11.4 wt% hydrogen storage capacity). The reaction is improving the heat transfer handling, as compared to pure MgH2, by reducing heat release during the charging process. To improve the kinetic aspects (reduction of operation temperatures and times) it has been proposed the use of catalysts a/o additives. The main objective of the project is to understand the role of these additives to improve the hydrogen sorption kinetics. In particular commercial Ti-Isopropoxide (TiO4C12H28) , TiO2 and VCl3 have been selected as additives for this study. Also other catalysts like Co3B, Ni3B or RuCo will be prepared in our laboratory and also tested. The systems will be prepared and activated by high energy ball milling of the two hy-dride materials milled together with or without the additives (5-10 mol%). Kinetic studies will be carried out by gravimetric and volumetric hydrogen sorption measurements (hydrogen desorption or adsorption vs. time at constant T) and differential scanning calorymetry (DSC) analysis. An exhaustive microstructural and chemical analysis of the systems at the different step (as prepared, desorbed and re-absorbed) will be undertaken by following techniques: X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) coupled to EDX (energy dispersive X-Ray) and EELS (Electron Energy Loss Spectroscopy) analysis, X-Ray Photoelectrton Spectroscopy (XPS) and X-Ray absorption Spectroscopy (XAS). The comparative study of the samples, with and without additives, and the correlation between the kinetic studies and the microstructural and chemical analysis, should clarify the mechanisms of the kinetic improvements produced by the additives. These mechanisms are today far from being understood. On basis of the acquired knowledge we expect to significantly improve the systems with respect to hydrogen storage applications.


Surface functionalisation of materials for high added value applications (FUNCOAT)




Research head: Agustín R. González-Elipe
Period: 15-12-2008 / 15-12-2013
Financial source: Ministerio de Ciencia e Innovación
Code: CSD2008- 00023 (Consolider)
Research group: Fernández Camacho, A., Espinós, J.P., Yubero, F., Cotrino, J., Sánchez López, J.C., Barranco, A., Palmero, A., Rojas, C.

Abstract [+]

FUNCOAT is an integrated project within the application call CONSOLIDER-INGENIO 2010 aiming at the exploitation of synergies existing in the Spanish scientific community, with the general objective of developing principles, processes and devices related to the surface functionalisation of materials. The project integrates 14 well-accredited research centres covering from fundamental and theoretical aspects to final applications. This large effort of integration is critical to achieve substantial advances in this broad field, which go beyond the mere accumulation of results. The research teams belong to different institutions: University, CSIC (responsible for the management of the project) and Technological centres. They maintain scientific relationships among them that extend over the last 15 years. Specific scientific and technological objectives are: understanding of fundamental phenomena driving the modification of surfaces and interfaces, control of the micro- and nano- structure of surfaces and thin films, optimization of thin film deposition methods, process development of multifunctional surfaces for novel applications (mechanical and metallurgical, optical, magnetic, energy, biomaterials, etc) and, finally, the production of new devices based on functionalised surfaces. Other important objectives include the technological transfer of the scientific results to the productive sectors as well as the education and training of scientists, young researchers and engineers. Strategic sectors of our modern society where the activities of FUNCOAT find a direct impact are material processing, energy, environment, health care, agriculture, etc. In order to accomplish an efficient coordination of efforts and the integration of the activities of all the groups, the project is structured around six workpackages: A) Fundamental phenomena in surfaces, interfaces and thin films, B) New processes for the control of the micro- and nano- structure of films and surfaces, C) Mechanical and metallurgical coatings for surface protection, D) Chemical functionalisation and biomedical applications, E) Coatings for optical control, photonic applications and solar energy collection and F) Novel magnetic phenomena in surfaces/interfaces.


Creating and disseminating novel nano-mechanical characterization techniques and standars (NANOINDENT)




Research head: Asunción Fernández Camacho
Period: 01-09-2008 / 31-08-2011
Financial source: Unión Europea
Code: NMP3-CA-2008-218659
Research group: Godinho, V., Philippon, D.

Abstract [+]

Our project aims to gather, improve, catalogue and present characterisation tech-niques, methods and equipment for nanomechanical testing. European-wide activities coordinated by a new virtual centre will improve existing nanoindentation metrology to reveal structure-properties relationship at the nano-scale. These methods are the only tools to characterise nanocomposite, nanolayer and interface mechanical behaviours in the nanometre range. This work will also lay down a solid base for subsequent efforts for defining and preparing new standards to support measurement technology in the field of nanomaterials characterisation. Steps include development of the classical and the dynamic nanoindentation method and its application to new fields, application of modified nano-indenters to new fields as scratching and wear measurement, firm and uniform determination of instrumental parameters and defining new standard samples for the new applications. The virtual centre will disseminate information based on a new “Nanocharacterisation database” built on two definite levels: on a broader level partners will inventory and process all novel nanocharacterisation techniques and, in narrower terms, they will concentrate on nanomechanical characterisation. This will be achieved through the synchronisation of efforts set around a core of round robins but the database will include data of other channels as parallel research work and literature recherché.


Multifunctional nanostructured coatings for mechanical and tribological applications (NANOMETRIB)




Research head: Juan Carlos Sánchez López
Period: 01-10-2007 / 30-09-2011
Financial source: Ministerio de Ciencia e Innovación
Code: MAT2007-66881-C02-01
Research group: Asunción Fernández Camacho, Cristina Fernández, Miguel Angel Muñoz-Márquez, Said El Mrabet, Vanda Godinho, M. David Abad

Abstract [+]

In this In the field of mechanical and tribological applications, the investigations are oriented towards the development of new systems capable to increase the performance of industrial operations, machines or tools by increasing the hardness and diminution of the friction and wear rate of materials under contact or increasing the oxidation resistance. These improvements suppose an energy-saving and cost reduction due to increase of tool life-time without needs of reparation as well as a reduction in the employment of lubricant emulsions with oils and greases. This project goal is to develop bew multifunctional nanostructured sys-tems by the Magnetron Sputtering PVD technique for mechanical and tribological applications where an adequate balance among the above-mentioned properties as friction, hardness and thermal stability are searched. The combination of multiple functions into a materials increase noticeably the material added value. To achieve this general objective, different coatings will be prepared by confinement of size and distribution of phases, chemical composition and microstructure in the nanometric regime. The chosen systems are constituted by crystals of hard materials (nitrides, carbides and borides of transition metals: Cr, Ti, W) that can be surrounded by a second phase that acts as lubricant based on C or dichalcogenides of W and doped with certain metals to increase their thermal resistance (V or Nb). In all cases, the project comprises their synthesis, chemical and structural characterization, and their practical validation in tribological tests of friction and wear. The establishment of the relationships between microstructure and measured properties will be an essential objective, since it enables the better understanding of the action mechanisms, and thus, the optimisation of such nanostructured multifunctional systems for an improved technological benefit.


icms