Scientific Papers in SCI


Title: Thermal conductivity at the amorphous-nanocrystalline phase transition in beech wood biocarbon
Author(s): Parfen'eva, LS; Orlova, TS; Smirnov, BI; Smirnov, IA; Misiorek, H; Jezowski, A; Ramirez-Rico, J
Source: Physica of the Solid State, 56 (2014) 1071-1080

abstract | fulltext

High-porosity samples of beech wood biocarbon (BE-C) were prepared by pyrolysis at carbonization temperatures T carb = 650, 1300, and 1600°C, and their resistivity ρ and thermal conductivity κ were studied in the 5–300 and 80–300 K temperature intervals. The experimental results obtained were evaluated by invoking X-ray diffraction data and information on the temperature dependences ρ(T) and κ(T) for BE-C samples prepared at T carb = 800, 1000, and 2400°C, which were collected by the authors earlier. An analysis of the κ(T carb) behavior led to the conclusion that the samples under study undergo an amorphous-nanocrystalline phase transition in the interval 800°C < T carb < 1000°C. Evaluation of the electronic component of the thermal conductivity revealed that the Lorentz number of the sample prepared at T carb = 2400°C exceeds by far the classical Sommerfeld value, which is characteristic of metals and highly degenerate semiconductors.

May, 2014 | DOI: 10.1134/S1063783414050229

Title: Mechanochemically synthesized nanocrystalline Sb2S3 particles
Author(s): Dutkova, E; Sayagues, MJ; Real, C; Zorkovska, A; Balaz, P; Satka, A; Kovac, J; Ficeriova, J
Source: Acta Physica Polonica A, 126 (2014) 943-946

abstract | fulltext

Nanocrystalline Sb2S3 particles have been synthesized from Sb and S powders by high-energy milling in a planetary mill using argon protective atmosphere. X-ray diffraction, particle size analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, electron diffraction, high resolution transmission electron microscopy, UV-VIS, and differential scanning calorimetry methods for characterization of the prepared particles were applied. The powder X-ray diffraction pattern shows that Sb2S3 nanocrystals belong to the orthorhombic phase with calculated crystallite size of about 36 nm. The nanocrystalline Sb2S3 particles are constituted by randomly distributed crystalline nanodomains (20 nm) and then these particles are forming aggregates. The monomodal distribution of Sb2S3 particles with the average hydrodynamic parameter 210 nm was obtained. The quantification of energy dispersive X-ray spectroscopy analysis peaks give an atomic ratio of 2:3 for Sb:S. The optical band gap determined from the absorption spectrum is 4.9 eV, indicating a considerable blue shift relative to the bulk Sb2S3. Differential scanning calorimetry curves exhibit a broad exothermic peak between 200 and 300°C, suggesting recovery processes. This interpretation is supported by X-ray diffraction measurements that indicate a 23-fold increase of the crystallite size to about 827 nm as a consequence of application of high temperature process. The controlled mechanochemical synthesis of Sb2S3nanoparticles at ambient temperature and atmospheric pressure remains a great challenge.

October, 2014 | DOI: 10.12693/APhysPolA.126.943

Title: Technological Proposals for Recycling Industrial Wastes for Environmental Applications
Author(s): Romero-Hermida, I; Morales-Florez, V; Santos, A; Villena, A; Esquivias, L
Source: Minerals, 4 (2014) 746-757

abstract | fulltext

A two-fold objective is proposed for this research: removing hazardous and unpleasant wastes and mitigating the emissions of green house gasses in the atmosphere. Thus, the first aim of this work is to identify, characterize and recycle industrial wastes with high contents of calcium or sodium. This involves synthesizing materials with the ability for CO2 sequestration as preliminary work for designing industrial processes, which involve a reduction of CO2 emissions. In this regard, phosphogypsum from the fertilizer industry and liquid wastes from the green olive and bauxite industries have been considered as precursors. Following a very simple procedure, Ca-bearing phosphogypsum wastes are mixed with Na-bearing liquid wastes in order to obtain a harmless liquid phase and an active solid phase, which may act as a carbon sequestration agent. In this way, wastes, which are unable to fix CO2 by themselves, can be successfully turned into effective CO2 sinks. The CO2 sequestration efficiency and the CO2 fixation power of the procedure based on these wastes are assessed.

September, 2014 | DOI: 10.3390/min4030746

Title: Nanometer-Scale Precision Tuning of 3D Photonic Crystals Made Possible Using Polyelectrolytes with Controlled Short Chain Length and Narrow Polydispersity
Author(s): Wang, Z; Calvo, ME; Masson, G; Arsenault, AC; Peiris, F; Mamak, M; Miguez, H; Manners, I; Ozin, GA
Source: Advanced Materials Interfaces, 1 (2014) Art. 1300051

abstract | fulltext

Nanometer-scale tuning of the optical properties of prefabricated photonic crystals is achieved via layer-by-layer assembly of polyelectrolytes in the interstitial spaces of the photonic lattice. The key to the approach is using polyelectrolytes with controlled short chain lengths. This ensures they do not block the air voids, thereby maintaining uniform coating and thus precise and reproducible optical 

February, 2014 | DOI: 10.1002/admi.201300051


Title: Hallmarks of mechanochemistry: from nanoparticles to technology
Author(s): Balaz, P; Achimovicova, M; Balaz, M; Billik, P; Cherkezova-Zheleva, Z; Criado, JM; Delogu, F; Dutkova, E; Gaffet, E; Gotor, FJ; Kumar, R; Mitov, I; Rojac, T; Senna, M; Streletskii, A; Wieczorek-Ciurowa, K
Source: Chemical Society Reviews, 42 (2013) 7571-7637

abstract | fulltext

The aim of this review article on recent developments of mechanochemistry (nowadays established as a part of chemistry) is to provide a comprehensive overview of advances achieved in the field of atomistic processes, phase transformations, simple and multicomponent nanosystems and peculiarities of mechanochemical reactions. Industrial aspects with successful penetration into fields like materials engineering, heterogeneous catalysis and extractive metallurgy are also reviewed. The hallmarks of mechanochemistry include influencing reactivity of solids by the presence of solid-state defects, interphases and relaxation phenomena, enabling processes to take place under non-equilibrium conditions, creating a well-crystallized core of nanoparticles with disordered near-surface shell regions and performing simple dry time-convenient one-step syntheses. Underlying these hallmarks are technological consequences like preparing new nanomaterials with the desired properties or producing these materials in a reproducible way with high yield and under simple and easy operating conditions. The last but not least hallmark is enabling work under environmentally friendly and essentially waste-free conditions (822 references).

September, 2013 | DOI: 10.1039/C3CS35468G

Title: Tuning Dichroic Plasmon Resonance Modes of Gold Nanoparticles in Optical Thin Films
Author(s): Gonzalez-Garcia, L; Parra-Barranco, J; Sanchez-Valencia, JR; Ferrer, J; Garcia-Gutierrez, MC; Barranco, A; Gonzalez-Elipe, AR
Source: Advanced Functional Materials, 23 (2013) 1655-1663

abstract | fulltext

A simple method is presented to tune the gold surface plasmon resonance (SPR) modes by growing anisotropic nanoparticles into transparent SiO2 thin films prepared by glancing angle deposition. In this type of composite film, the anisotropy of the gold nanoparticles, proved by gracing incidence small angle X-ray scattering, is determined by the tilted nanocolumnar structure of the SiO2 host and yields a strong film dichroism evidenced by a change from an intense colored to a nearly transparent aspect depending on light polarization and/or sample orientation. The formation in these films of lithographic non-dichroic SPR patterns by nanosecond laser writing demonstrates the potentialities of this procedure to develop novel optical encryption or anti-counterfeiting structures either at micrometer- or macroscales.

April, 2013 | DOI: 10.1002/adfm.201201900

Title: Angular response of photonic crystal based dye sensitized solar cells
Author(s): López López, C.; Colodrero, S.; Calvo, M.E. and Míguez, H.
Source: Energy & Environmental Science, 6 (2013) 1260-1266

abstract | fulltext

Herein we report an experimental analysis of the performance of photonic crystal based dye solar cells (PC-DSCs) as the incident light angle moves away from the normal with respect to the cell surface. Nanoparticle multilayers operating at different wavelength ranges were coupled to the working electrode of a dye solar cell for this study. The interplay between optical and photovoltaic properties with the incident light angle is discussed. We demonstrate that an efficiency enhancement is attained for PC-DSCs at all angles measured, and that rational design of the photonic crystal back mirror leads to a reduction of the photocurrent losses related to the tilt angle of the cell, usually labeled as cosine losses. Angular variations of the cell transparency are also reported and discussed. These angular properties are relevant to the application of these solar devices in building integrated photovoltaics as potential window modules.

April, 2013 | DOI: 10.1039/C3EE23609A

Title: Tuning of Cell–Biomaterial Anchorage for Tissue Regeneration
Author(s): Leal-Egana, Aldo; Diaz-Cuenca, Aranzazu; Boccaccini, Aldo R
Source: Advanced Materials, 25 (2013) 4049-4057

abstract | fulltext

Which mechanisms mediate cell attachment to biomaterials? What role does the surface charge or wettability play on cell–material anchorage? What are the currently investigated strategies to modify cell–matrix adherence spatiotemporally? Considering the development of scaffolds made of biocompatible materials to temporarily replace the structure and/or function of the extracellular matrix, focus is given to the analysis of the specific (i.e., cell adhesive peptide sequences) and unspecific (i.e., surface charge, wettability) mechanisms mediating cell-matrix interactions. Furthermore, because natural tissue regeneration is characterized by the dynamic attachment/detachment of different cell populations, the design of advanced scaffolds for tissue engineering, based in the spatiotemporal tuning of cell–matrix anchorage is discussed.

August, 2013 | DOI: 10.1002/adma.201301227

Title: Resonant Photocurrent Generation in Dye-Sensitized Periodically Nanostructured Photoconductors by Optical Field Confinement Effects
Author(s): Anaya, M; Calvo, ME; Luque-Raigon, JM; Miguez, H
Source: Journal of the American Chemical Society, 135 (2013) 7803-7806

abstract | fulltext

Herein we show experimental evidence of resonant photocurrent generation in dye-sensitized periodically nanostructured photoconductors, which is achieved by spectral matching of the sensitizer absorption band to different types of localized photon modes present in either periodic or broken symmetry structures. Results are explained in terms of the calculated spatial distribution of the electric field intensity within the configurations under analysis.

May, 2013 | DOI: 10.1021/ja401096k

Title: Selective UV Reflecting Mirrors Based on Nanoparticle Multilayers
Author(s): Smirnov, JRC; Calvo, ME; Miguez, H
Source: Advanced Functional Materials, 23 (2013) 2805-2811

abstract | fulltext

A new type of nanostructured selective ultraviolet (UV) reflecting mirror is presented. Periodic porous multilayers with photonic crystal properties are built by spin-coating-assisted layer-by-layer deposition of colloidal suspensions of nanoparticles of ZrO2 and SiO2 (electronic band gap at λ < 220 nm). These optical filters are designed to block well-defined wavelength ranges of the UVA, UVB, and UVC regions of the electromagnetic spectrum while preserving transparency in the visible. The shielding against those spectral regions arises exclusively from optical interference phenomena and depends only on the number of stacked layers and the refractive index contrast between them. In addition, it is shown that the accessible pore network of the as-deposited multilayer allows preparing thin, flexible, self-standing, transferable, and adaptable selective UV filters by polymer infiltration, without significantly losing reflectance intensity, i.e., preserving the dielectric contrast. These films offer a degree of protection comparable to that of traditional ones, without any foreseeable unwanted secondary effects, such as photodegradation, increase of local temperature or, as is the case for organic absorbers, generation of free radicals, all of which are caused by light absorption.

June, 2013 | DOI: 10.1002/adfm.201202587

Centro de Investigaciones Científicas Isla de la Cartuja. C/Américo Vespucio, 49 - 41092 Sevilla (España)
Tel.: [+34] 954489527 | Fax: [+34] 954460165 |