Scientific Papers in SCI

2014


Title: Tribological comparison of different C-based coatings in lubricated and unlubricated conditions
Author(s): Ciarsolo, I; Fernandez, X; de Gopegui, UR; Zubizarreta, C; Abad, MD; Mariscal, A; Caretti, I; Jimenez, I; Sanchez-Lopez, JC
Source: Surface and Coatings Technology, 257 (2014) 278-285

abstract | fulltext

The use of carbon-based coatings (hydrogenated and non-hydrogenated DLC, doped and alloyed-DLC) is of wide interest due to its applications in mechanical components submitted to friction and wear including sliding parts in automotive engines. A tribological comparative analysis using a reciprocating (SRV) tester in lubricated and unlubricated conditions with a 4-stroke motor oil has been carried out on six currently relevant state-of-the-art coatings (namely WC/a-C, TiBC/a-C and TiC/a-C:H nanocomposites, Ti-doped DLC, BCN film and a crystalline monolithic TiC film as reference). The quantification of the fraction of the sp(2)-bonded matrix has been done by fitting of C 1s XPS peak and the mechanical properties evaluated by nanoindentation. The comparative analysis has allowed us to identify the capabilities of each system depending on the testing conditions and the possible synergies as a function of the chemical composition and film nature. Under lubricated harsh conditions (max. contact pressure 1.7 GPa) only coatings displaying hardness superior to 20 GPa could stand the sliding motion without failure. At lower contact pressures, a significant fraction of sp(2) carbon (>= 75%) is advantageous for reducing wear in boundary lubrication. WC/a-C, BCN and Ti-DLC films showed the best tribological response in dry sliding conditions. This fundamental information would be of relevance for assisting engineers in selecting best partnership for lubrication systems. 

October, 2013 | DOI: 10.1016/j.surfcoat.2014.07.068

Title: Effect of clays and metal containers in retaining Sm3+ and ZrO2+ and the process of reversibility
Author(s): El Mrabet, S; Castro, MA; Hurtado, S; Orta, MM; Pazos, MC; Villa-Alfageme, M; Alba, MD
Source: American Mineralogist, 99 (4) (2014) 696-703

abstract | fulltext

Knowledge and understanding about radionuclides retention processes on the materials composing the engineered barrier (clay mineral and metallic container waste) are required to ensure the safety and the long-term performance of radioactive waste disposal. Therefore, the present study focuses on the competitiveness of clay and the metallic container in the process of adsorption/desorption of the radionuclides simulators of Am3+ and UO22+. For this purpose, a comparative study of the interaction of samarium (chosen as chemical analog for trivalent americium) and zirconyl (as simulator of uranyl and tetravalent actinides) with both FEBEX bentonite and metallic container, under subcritical conditions, was carried out. The results revealed that the AISI-316L steel container, chemical composition detailed in Table 1, immobilized the high-radioactive waste (HRW), even during the corrosion process. The ZrO2+ was irreversibly adsorbed on the minireactor surface. In the case of samarium SEM/EDX analysis revealed the formation of an insoluble phase of samarium silicate on the container surface. There was no evidence of samarium diffusion through the metallic container. Samarium remained adsorbed by the container also after desorption experiment with water. Therefore, steel canister is actively involved in the HRW immobilization.

April, 2014 | DOI: 10.2138/am.2014.4665

Title: Properties of mechanochemically synthesized nanocrystalline Bi2S3 particles
Author(s): Dutkova, E; Sayagues, MJ; Zorkovska, A; Real, C; Balaz, P; Satka, A; Kovac, J
Source: Materials Science in Semiconductor Processing, 27 (2014) 267-272

abstract | fulltext

Nanocrystalline Bi2S3 particles have been synthesized from Bi and S powders by high-energy milling in a planetary mill. Structural and microstructural characterization of the prepared particles, including phase identification, specific surface area measurement and particle size analysis has been carried out. The optical properties were measured by spectroscopic methods and the structural stability up to 500 °C was studied by thermal analysis. The production of orthorhombic Bi2S3 with crystallite size of about 26 nm was confirmed by X-ray diffraction. The nanocrystals tend to agglomerate due to their large specific surface area. Accordingly, the average hydrodynamic diameter of the mechanochemically synthesized particles is 198 nm. EDS analysis shows that the synthesized material is pure Bi2S3. The band gap of the Bi2S3 nanoparticles is 4.5 eV which is wider than that in bulk materials. The nanoparticles exhibit good luminescent properties with a peak centered at 490 and 390 nm. Differential scanning calorimetry curves exhibit a broad exothermic peak between 200 and 300 °C, suggesting recovery processes. This interpretation is supported by X-ray diffraction measurements that indicate a 10-fold increase of the crystallite size to about 230 nm. The controlled mechanochemical synthesis of Bi2S3 nanoparticles at ambient temperature and atmospheric pressure remains a great challenge.

November, 2014 | DOI: 10.1016/j.mssp.2014.05.057

Title: The growth of cobalt oxides on HOPG and SiO2 surfaces: A comparative study
Author(s): Diaz-Fernandez, D; Mendez, J; Bomati-Miguel, O; Yubero, F; Mossanek, RJO; Abbate, M; Dominguez-Canizares, G; Gutierrez, A; Tougaard, S; Soriano, L
Source: Surface Science, 624 (2014) 145-153

abstract | fulltext

The growth of cobalt oxides by reactive thermal evaporation of metallic cobalt on highly oriented pyrolytic graphite (HOPG) and SiO2 (X cut quartz surface), in an oxygen atmosphere at room temperature, has been chemically and morphologically studied by means of X-ray photoelectron spectroscopy and atomic force microscopy. The chemical analysis, which also includes cluster calculations, reveals that for the early deposition stages on both substrates, Co2 + species are stabilized at the surface up to a coverage which depends on the substrate. Further coverages lead to the formation of the spinel oxide Co3O4. The results are discussed in terms of the dependence of the surface energy on the size of the CoO deposited moieties. On the other hand, it has been found that the initial way of growth of cobalt oxides on HOPG is of Stranski–Krastanov mode whereas on SiO2 the growth is of Volmer–Weber mode. The differences in the growth morphology have been discussed in terms of the surface diffusivity of the CoO deposits on the substrates.

June, 2014 | DOI: 10.1016/j.susc.2014.02.007

Title: LMM Auger primary excitation spectra of copper
Author(s): Pauly, N; Tougaard, S; Yubero, F
Source: Surface Science, 630 (2014) 294-299

abstract | fulltext

The shape and intensity of measured Auger peaks are strongly affected by extrinsic excitations due to electron transport out of the surface and to intrinsic excitations induced by the sudden creation of the two static core holes. Following a method developed for XPS in a previous work [N. Pauly, S. Tougaard, F. Yubero, Surf. Sci. 620 (2014) 17], we have calculated the effective energy-differential inelastic electron scattering cross-sections, including the effects of the surface and of the two core holes, within the dielectric response theory by means of the QUEELS-XPS software (QUantitative analysis of Electron Energy Losses at Surfaces for XPS). The Auger spectra are then modeled by convoluting this energy loss cross section with the primary excitation spectrum that accounts for all effects which are part of the initial Auger process, i.e. L–S coupling and vacancy satellite effects. The shape of this primary excitation spectrum is fitted to get close agreement between the theoretical and the experimental spectra obtained from X-ray excited Auger electron spectroscopy (XAES). We have performed these calculations of XAES spectra for various LMM Auger transitions of pure Cu (L3M45M45, L3M23M45, L3M23M23 and L2M45M45 transitions). We compare the resulting primary excitation spectra with theoretical results published in the literature and obtain reasonable quantitative agreement. In particular, we extract from experimental spectra quantitative intensities due to Coster–Kronig, shake-off and shake-up processes relative to the intensity from the “normal” Auger process.

December, 2014 | DOI: 10.1016/j.susc.2014.08.029

Title: A Nanoscale Characterization with Electron Microscopy of Multilayered CrAlYN Coatings: A Singular Functional Nanostructure
Author(s): Rojas, TC; Dominguez-Meister, S; Brizuela, M; Garcia-Luis, A; Fernandez, A; Sanchez-Lopez, JC
Source: Microscoy and Microanalysis, 20 (2014) 14-24

abstract | fulltext

A combination of transmission electron microscopy techniques and spatially resolved microanalysis is used to investigate the nanostructure, constituting phases, and chemical elemental distribution in CrAlYN multilayered coatings. The location of the metallic elements and their chemical state are needed to understand their functional properties. Samples were prepared with variable Al (4-12 at%) and Y (2-5 at%) contents by direct current reactive magnetron sputtering on silicon substrates using metallic targets and Ar/N-2 mixtures under different deposition parameters (power applied to the target and rotation speed of the sample holder). The changes produced in the nanostructure and chemical distribution were investigated. Nanoscale resolution electron microscopy analysis has shown that these coatings present a singular nanostructure formed by multilayers containing at a certain periodicity nanovoids filled with molecular nitrogen. Spatially resolved energy dispersive spectroscopy and electron energy loss elemental mappings and profiles showed that the chromium, aluminum, and yttrium atoms are distributed in a sequential way following the position of the targets inside the deposition chamber. Analysis of the different atomic distribution and phases formed at the nanoscale is discussed depending on the deposition parameters.

February, 2014 | DOI: 10.1017/S1431927613013962

Title: Tomographic Heating Holder for In Situ TEM: Study of Pt/C and PtPd/Al2O3 Catalysts as a Function of Temperature
Author(s): Gontard, LC; Dunin-Borkowski, RE; Fernandez, A; Ozkaya, D; Kasama, T
Source: Microscoy and Microanalysis, 20 (2014) 982-990

abstract | fulltext

A tomographic heating holder for transmission electron microscopy that can be used to study supported catalysts at temperatures of up to similar to 1,500 degrees C is described. The specimen is placed in direct thermal contact with a tungsten filament that is oriented perpendicular to the axis of the holder without using a support film, allowing tomographic image acquisition at high specimen tilt angles with minimum optical shadowing. We use the holder to illustrate the evolution of the active phases of Pt nanoparticles on carbon black and PtPd nanoparticles on gamma-alumina with temperature. Particle size distributions and changes in active surface area are quantified from tilt series of images acquired after subjecting the specimens to increasing temperatures. The porosity of the alumina support and the sintering mechanisms of the catalysts are shown to depend on distance from the heating filament.

June, 2014 | DOI: 10.1017/S1431927614000373

Title: Transmission electron microscopy of unstained hybrid Au nanoparticles capped with PPAA (plasma-poly-allylamine): Structure and electron irradiation effects
Author(s): Gontard, LC; Fernandez, A; Dunin-Borkowski, RE; Kasama, T; Lozano-Perez, S; Lucas, S
Source: Micron, 67 (2014) 1-9

abstract | fulltext

Hybrid (organic shell–inorganic core) nanoparticles have important applications in nanomedicine. Although the inorganic components of hybrid nanoparticles can be characterized readily using conventional transmission electron microscopy (TEM) techniques, the structural and chemical arrangement of the organic molecular components remains largely unknown. Here, we apply TEM to the physico-chemical characterization of Au nanoparticles that are coated with plasma-polymerized-allylamine, an organic compound with the formula C3H5NH2. We discuss the use of energy-filtered TEM in the low-energy-loss range as a contrast enhancement mechanism for imaging the organic shells of such particles. We also study electron-beam-induced crystallization and amorphization of the shells and the formation of graphitic-like layers that contain both C and N. The resistance of the samples to irradiation by high-energy electrons, which is relevant for optical tuning and for understanding the degree to which such hybrid nanostructures are stable in the presence of biomedical radiation, is also discussed.

December, 2014 | DOI: 10.1016/j.micron.2014.06.004

Title: Tribological behaviour at high temperature of hard CrAlN coatings doped with Y or Zr
Author(s): Sanchez-Lopez, JC; Contreras, A; Dominguez-Meister, S; Garcia-Luis, A; Brizuela, M
Source: Thin Solid Films, 550 (2014) 413-420

abstract | fulltext

The tribological properties of CrAlN, CrAlYN and CrAlZrN coatings deposited by direct current reactive magnetron sputtering are studied by means of pin-on-disc experiments at room temperature, 300, 500 and 650 °C using alumina balls as counterparts. The influence of the metallic composition (Al, Y and Zr) on the friction, wear properties and oxidation resistance is studied by means of scanning electron microscopy, energy dispersive X-ray analysis and Raman analysis of the contact region after the friction tests. The results obtained allow us to classify the tribological behaviour of the CrAl(Y,Zr)N coatings into three groups according to the nature of the dopant and aluminium content. The sliding wear mechanism is characterized by the formation of an overcoat rich in chromium and aluminium oxides whose particular composition is determined by the initial chemical characteristics of the coating and the testing temperature. The fraction of Cr2O3 becomes more significant as the Al content decreases and the temperature increases. The addition of Y, and particularly Zr, favours the preferential formation of Cr2O3 versus CrO2 leading to a reduction of friction and wear of the counterpart. Conversely, the tribological behaviour of pure CrAlN coatings is characterized by higher friction but lower film wear rates as a result of higher hardness and major presence of aluminium oxides on the coating surface.

January, 2014 | DOI: 10.1016/j.tsf.2013.10.041

Title: Nanoindentation of nanocolumnar TiO2 thin films with single and stacked zig-zag layers
Author(s): Jimenez-Pique, E; Gonzalez-Garcia, L; Rico, VJ; Gonzalez-Elipe, AR
Source: Thin Solid Films, 550 (2014) 444-449

abstract | fulltext

This paper reports a systematic analysis of the mechanical properties of nanocolumnar TiO2 thin films prepared by evaporation at a glancing geometry. A systematic study of the mechanical properties is carried out by comparing the hardness and the Young's modulus determined by nanoindentation for thin films prepared at different deposition angles and characterized by a tilted nanocolumnar structure and others where the nanocolumns are perpendicular to the substrate or are arranged as zig-zag stacked layers. A correlation between mechanical properties and glazing angle geometry is proposed. Differences in the results are discussed in view of the cross section images obtained by focused ion beam and of the deformed areas. Zig-zagged layers present lower values of hardness and Young's modulus due to the collapse of the angles of the columns, but at the same time this configuration impedes the appearance of fracture or delamination, as observed for tilted columns.

January, 2014 | DOI: 10.1016/j.tsf.2013.10.022

Centro de Investigaciones Científicas Isla de la Cartuja. C/Américo Vespucio, 49 - 41092 Sevilla (España)
Tel.: [+34] 954489527 | Fax: [+34] 954460165 | buzon@icmse.csic.es