Scientific Papers in SCI

2011


Title: Photodeposition of gold on titanium dioxide for photocatalytic phenol oxidation
Author(s): Hidalgo, MC; Murcia, JJ; Navio, JA; Colon, G
Source: Applied Catalysis A-General, 397 (2011) 112-120

abstract | fulltext

The influence of experimental conditions during the photodeposition in the preparation of supported Au on TiO2 has been studied. Besides preparation pH, light intensity and deposition time showed to have a high influence on the final properties of gold deposits. Photodeposition using illumination with a high light intensity UV-vis lamp (140 W/m2 UVA range) resulted to be an ineffective method for obtaining nanoparticles of gold on the titania, producing very large and poorly distributed gold deposits. Thus obtained materials did not show any important improvement of their photocatalytic activity tested for phenol oxidation. By contrast, photodeposition using a low light intensity of illumination (0.15 W/m 2 UVA range), produced materials with notably improved photocatalytic activity. The illumination with such a low light intensity allowed the control of the amount, aggregation and oxidation state of gold by changing deposition time, enabling a feasible method of tailoring Au-TiO2 with the appropriate properties for a high photocatalytic activity. Best photocatalytic behaviour for phenol photodegradation was obtained for Au-TiO2 samples prepared by photodeposition at low light intensity with 120 min photodeposition time for catalysts with a 0.5% and 1% nominal content of gold and with 60 min photodeposition time for catalyst with a 2% nominal content of gold.

April, 2011 | DOI: 10.1016/j.apcata.2011.02.030

Title: Synthesis, characterization and photocatalytic activity of Bi-doped TiO2 photocatalysts under simulated solar irradiation
Author(s): Murcia-López, S., Hidalgo, M.C., Navío, J.A.
Source: Applied Catalysis A: General, 404 (2011) 59-67

abstract | fulltext

A series of Bi3+-doped TiO2 catalysts with a doping concentration up to 2 wt% were prepared by a sol-gel hydrothermal method. The prepared photocatalysts were characterized by different techniques to determine their structure, morphology and light absorption properties. The activities were evaluated in the photocatalytic oxidation of phenol in aqueous solution under UV-vis illumination. The experimental results indicate that the presence of Bi3+ in TiO2 catalysts enhances the photocatalytic reaction of phenol degradation, although the efficiency of the process markedly depends on the nominal content of the Bi3+ and on the calcination temperature. It was found that the optimal dosage of 0.5 wt% Bi3+ in TiO2 and calcinations at 600 °C 4 h achieved the fastest reaction of phenol degradation under the experimental conditions. From the comparison of the initial rates of the photocatalytic degradation of phenol between home prepared undoped and Bi3+-doped TiO2 with commercial TiO2 Degussa P25, it can be inferred that home prepared TiO 2 calcined at temperatures above 500 °C clearly exceed the photocatalytic performance of P25. When bismuth is incorporated, the reaction rate values are even higher, especially at 600 °C. Even when Bi 3+-doped TiO2 (0.5 wt% Bi3+) calcined at 600 °C has almost the same BET surface than P25, its activity is better. In particular, the reaction rate for the sample with a 0.5% mass content of Bi 3+ calcined at 600 °C not only present higher value with respect to the other series but also a degree of mineralization close to 100%.

September, 2011 | DOI: 10.1016/j.apcata.2011.07.008

Title: Angular emission properties of a layer of rare-earth based nanophosphors embedded in one-dimensional photonic crystal coatings
Author(s): Sánchez-Sobrado, O., Yacomotti, A.M., Calvo, M.E., Martínez, O.E., Ocaña, M., Núñez, N., Levenson, J.A., Míguez, H.
Source: Applied Physics Letters, 99 (2011) Article number 051111

abstract | fulltext

The angular properties of light emitted from rare-earth based nanophosphors embedded in optical resonators built in one-dimensional photonic crystal coatings are herein investigated. Strong directional dependence of the photoluminescence spectra is found. Abrupt angular variations of the enhancement caused by the photonic structure and the extraction power are observed, in good agreement with calculated polar emission patterns. Our results confirm that the optical cavity favors the extraction of different wavelengths at different angles and that integration of nanophosphors within photonic crystals provides control over the directional emission properties that could be put into practice in phosphorescent displays.

August, 2011 | DOI: 10.1063/1.3619814

Title: Kinetic Analysis of Complex Solid-State Reactions. A New Deconvolution Procedure
Author(s): Antonio Perejón, Pedro E. Sánchez-Jiménez, José M. Criado, and Luis A. Pérez-Maqueda
Source: Journal of Physical Chemistry B, 2011, 115 (8), pp 1780–1791

abstract | fulltext

The kinetic analysis of complex solid-state reactions that involve simultaneous overlapping processes is challenging. A method that involves the deconvolution of the individual processes from the overall differential kinetic curves obtained under linear heating rate conditions, followed by the kinetic analysis of the discrete processes using combined kinetic analysis, is proposed. Different conventional mathematical fitting functions have been tested for deconvolution, paying special attention to the shape analysis of the kinetic curves. It has been shown that many conventional mathematical curves such as the Gaussian and Lorentzian ones fit kinetic curves inaccurately and the subsequent kinetic analysis yields incorrect kinetic parameters. Alternatively, other fitting functions such as the Fraser-Suzuki one properly fit the kinetic curves independently of the kinetic model followed by the reaction and their kinetic parameters, and moreover, the subsequent kinetic analysis yields the correct kinetic parameters. The method has been tested with the kinetic analysis of complex processes, both simulated and experimental.

March, 2011 | DOI: 10.1021/jp110895z

Title: An improved model for the kinetic description of the thermal degradation of cellulose
Author(s): Sanchez-Jimenez, PE; Perez-Maqueda, LA; Perejon, A; Pascual-Cosp, J; Benitez-Guerrero, M; Criado, JM
Source: Cellulose, 18 (2011) 1487-1498

abstract | fulltext

In spite of the large amount of work performed by many investigators during last decade, the actual understanding of the kinetics of thermal degradation of cellulose is still largely unexplained. In this paper, recent findings suggesting a nucleation and growth of nuclei mechanism as the main step of cellulose degradation have been reassessed and a more appropriate model involving chain scission and volatilization of fragments has been proposed instead. The kinetics of cellulose pyrolysis have been revisited by making use of a novel kinetic method that, without any previous assumptions regarding the kinetic model, allows performing the kinetic analysis of a set of experimental curves recorded under different heating schedules. The kinetic parameters and kinetic model obtained allows for the reconstruction of the whole set of experimental TG curves.

December, 2011 | DOI: 10.1007/s10570-011-9602-3

Title: Rhodamine 6G and 800 J-heteroaggregates with enhanced acceptor luminescence (HEAL) adsorbed in transparent SiO2 GLAD thin films
Author(s): Sanchez-Valencia, JR; Aparicio, FJ; Espinos, JP; Gonzalez-Elipe, AR; Barranco, A
Source: Physical Chemistry Chemical Physics, 13 (2011) 7071-7082

abstract | fulltext

An enhanced fluorescent emission in the near infrared is observed when the Rhodamine 800 (Rh800) and 6G (Rh6G) dyes are coadsorbed in porous SiO 2 optical thin films prepared by glancing angle deposition (GLAD). This unusual behavior is not observed in solution and it has been ascribed to the formation of a new type of J-heteroaggregates with enhanced acceptor luminescence (HEAL). This article describes in detail and explains the main features of this new phenomenology previously referred in a short communication [J. R. Sánchez-Valencia, J. Toudert, L. González-García, A. R. González-Elipe and A. Barranco, Chem. Commun., 2010, 46, 4372-4374]. It is found that the efficiency and characteristics of the energy transfer process are dependent on the Rh6G/Rh800 concentration ratio which can be easily controlled by varying the pH of the solutions used for the infiltration of the molecules or by thermal treatments. A simple model has been proposed to account for the observed enhanced acceptor luminescence in which the heteroaggregates order themselves according to a "head to tail" configuration due to the geometrical constrains imposed by the SiO2 porous matrix thin film. The thermal stability of the dye molecules within the films and basic optical (absorption and fluorescence) principles of the HEAL process are also described.

April, 2011 | DOI: 10.1039/c0cp02421j

Title: Selective CO removal over Au/CeFe and CeCu catalysts in microreactors studied through kinetic analysis and CFD simulations
Author(s): Arzamendi, G; Uriz, I; Dieguez, PM; Laguna, OH; Hernandez, WV; Alvarez, A; Centeno, MA; Odriozola, JA; Montes, M; Gandia, LM
Source: Chemical Engineering Journal, 167 (2011) 588-596

abstract | fulltext

A kinetic study of the preferential oxidation of CO in H2 rich streams (CO-PrOx) over a cerium-copper oxide (CeCu) and a gold catalyst supported on cerium-iron oxide (Au/CeFe) is presented. The gold catalyst is very active but the CeCu oxide is more selective. A kinetic model describing the CO-PrOx system with CO2 and H2O in the feed has been formulated considering the oxidation of CO and H2 and the reverse water-gas shift reaction. The rate equations have been implemented in computational fluid dynamics codes to study the influence of the operating variables on the CO-PrOx in microchannels and microslits. The CeCu catalyst is the only one capable of achieving final CO contents below 10-100ppmv. Due to the opposite effect of temperature on activity and selectivity there is an optimal temperature at which the CO content is minimal over CeCu. This temperature varies between 170 and 200°C as the GHSV increases from 10,000 to 50,000h-1. Simulations have evidenced the very good heat transfer performance of the microdevices showing that the CO-PrOx temperature can be controlled using air as cooling fluid although the inlet temperature and flow rate should be carefully controlled to avoid reaction extinction. Both microchannels and microslits behaved similarly. The fact that the microslits are much easier to fabricate may be an interesting advantage in favour of that geometry in this case. © 2010 Elsevier B.V.

March, 2011 | DOI: 10.1016/j.cej.2010.08.083

Title: Design and testing of a microchannel reactor for the PROX reaction
Author(s): Cruz, S; Sanz, O; Poyato, R; Laguna, OH; Echave, FJ; Almeida, LC; Centeno, MA; Arzamendi, G; Gandia, LM; Souza-Aguiar, EF; Montes, M; Odriozola, JA
Source: Chemical Engineering Journal, 167 (2011) 634-642

abstract | fulltext

The different steps for manufacturing a microchannel reactor for the PROX reaction are discussed. Transient Liquid Phase bonding (TLP) using a Ni-B-Si amorphous melt spun is used for joining micromilled Al-alloyed ferritic stainless steel plates followed by recrystallization at 1200°C for 5h. A CuOx-CeO2 catalyst synthesized by the coprecipitation method was washcoated on the microchannel block resulting in a homogenous 20-30μm thick layer. The catalytic activity for CO-PROX reaction is similar in both the powder catalyst and the microchannel coated reactor but the selectivity is higher in the microchannel reactor. © 2010 Elsevier B.V.

March, 2011 | DOI: 10.1016/j.cej.2010.08.088

Title: Fischer-Tropsch synthesis in microchannels
Author(s): Almeida, LC; Echave, FJ; Sanz, O; Centeno, MA; Arzamendi, G; Gandia, LM; Sousa-Aguiar, EF; Odriozola, JA; Montes, M
Source: Chemical Engineering Journal, 167 (2011) 536-544

abstract | fulltext

Different metallic supports (aluminum foams of 40ppi, honeycomb monolith and micromonolith of 350 and 1180cpsi, respectively) have been loaded with a 20%Co-0.5%Re/γ-Al2O3 catalyst by the washcoating method. Layers of different thicknesses have been deposited onto the metallic supports. The catalytic coatings were characterized measuring their textural properties, adhesion and morphology. These structured catalysts have been tested in the Fischer-Tropsch synthesis (FTS) and compared with a microchannel block presenting perpendicular channels for reaction and cooling. The selectivity depends on the type of support used and mainly on the thickness of the layer deposited. In general, the C5+ selectivity decreased at increasing CO conversion for all of the systems (powder, monoliths, foams and microchannels block). On the other hand, the selectivity to methane increased with the thickness of the catalytic layer due to the higher effective H2/CO ratio over the active sites resulting from the higher diffusivity of H2 compared with CO in the liquid products filling the pores. The C5+ selectivity of the microchannels reactor is higher than that of the structured supports and the powder catalyst. © 2010 Elsevier B.V.

March, 2011 | DOI: 10.1016/j.cej.2010.09.091

Title: Artificial weathering pools of calcium-rich industrial waste for CO2 sequestration
Author(s): Morales-Florez, V; Santos, A; Lemus, A; Esquivias, L
Source: Chemical Engineering Journal, 166 (2011) 132-137

abstract | fulltext

Processes of carbonation of calcium-rich aqueous industrial wastes from acetylene production were performed mimicking rock weathering, using the atmospheric carbon dioxide as reactant. This residue was carbonated exposing it to the air in artificial pools with controlled solid-to-liquid and surface-to-volume ratios, and the efficiency of this simple mineral carbonation process was maximized. Considering realistic values of just one acetylene production plant, the intelligent handling of the calcium-rich waste would make it possible to counteract the emission of around 800t of carbon dioxide per year, so the CO2 emissions of the acetylene production could be completely compensated and its carbon footprint significantly reduced.X-ray diffraction patterns and thermogravimetric analyses reported the conversion, up to 88%, of the calcium hydroxide into calcium carbonate under atmospheric conditions. So, considering a realistic industrial scale-up, 476kg of CO2 could be captured with 1t of dry waste. The morphology of the grains is resolved by electron microscopy, and can be described as needles 15nm wide and 200nm long arranged in grains smaller than 1 micron. We exploit these nanometric textural parameters (nanometric pores and particles having a specific surface area ∼50m2/g) to design an efficient carbon fixation procedure. The aim of this work is to propose this simple carbonation technology, based on aqueous alkaline industrial waste, as a contribution to reducing global CO2 emissions.

January, 2011 | DOI: 10.1016/j.cej.2010.10.039

Centro de Investigaciones Científicas Isla de la Cartuja. C/Américo Vespucio, 49 - 41092 Sevilla (España)
Tel.: [+34] 954489527 | Fax: [+34] 954460165 | buzon@icmse.csic.es