Scientific Papers in SCI

2012


Title: Gold supported on pillared clays for CO oxidation reaction: Effect of the clay aggregate size
Author(s): Alvarez, A; Moreno, S; Molina, R; Ivanova, S; Centeno, MA; Odriozola, JA
Source: Applied Clay Science, 69 (2012) 22-29

abstract | fulltext

A series of 1% m/m gold particles supported on Fe, Ce and Al pillared bentonite (from Valle del Cauca, Colombia) and clay “M64” (from Tolima, Colombia) using three different fractions of aggregate sizes (≤ 2 μm, ≤ 50 μm, and ≤ 150 μm) were characterized by particle size measurements, X-ray diffraction, transmission electronic microscopy (TEM), SBET and X-ray fluorescence spectrometry (XRF) techniques. The materials tested with CO oxidation. The separation yield for each fraction depended on the type of clay. Whatever the clay or the aggregate size, the pillaring process was successfully carried out, introducing Fe, Ce and Al pillars and increasing the microporosity and the specific surface area of the material. Gold particles presented a homogenous distribution of 2–3 nm on the pillared bentonite, and of about 10 nm on the pillared clay M64. The aggregate size slightly influenced the amount of deposited gold particles and their size. All gold catalysts were active in CO oxidation, the activity depending on the nature of the clay as well as the gold loading and average gold particle size but not on the aggregate size.

November, 2012 | DOI: 10.1016/j.clay.2012.07.008

Title: Effects of the presence of Fe(0) on the sorption of lanthanum and lutetium mixtures in smectites
Author(s): Galunin, E; Alba, MD; Santos, MJ; Vidal, M
Source: Applied Clay Science, 65-66 (2012) 162-172

abstract | fulltext

The sorption of La and Lu mixtures was examined in two bentonites after incubation for three months at 20 and 80 °C with Fe(0), as a laboratory approach to evaluate the effects of waste canister corrosion in a deep repository on the performance of clay engineered barriers. The sorption/desorption parameters were determined from batch tests in two ionic media: deionized water and, to consider the additional effect of cement leachates, 0.02 mol L− 1 Ca.

Results from XRD analyses showed the formation of crystalline FeO(OH), goethite, in a few samples and the degradation of the bentonites due to Fe(0) oxidation during incubation. Moreover, the EDX spectra showed that the lanthanides were sorbed primarily at smectite sites, although sorption onto goethite was also observed, whereas Fe(0) particles did not contribute to lanthanide sorption. The formation of goethite could explain the high Kd values measured in a few scenarios (e.g., those with single solutions or mixtures with the lowest initial concentration of the competitive lanthanide in which high affinity sites governed sorption), with up to 3-fold increases over the values obtained without Fe incubation. However, at higher lanthanide concentration, Kd values decreased or remained constant compared to the samples without Fe incubation, which could be explained by bentonite degradation. In the Ca medium, as much as 5 times lower Kd values were obtained, because of the competitive effect of the Ca ions, especially for Lu in the MX80 bentonite. This indicated that the small number of high affinity sites had been diminished.

The sorption data were satisfactorily fitted to a two-solute Langmuir model. In addition, Kd values correlated well with desorption data, which showed that the larger the decrease in Kd, the larger the increase in sorption reversibility. It is suggested that corrosion products from the metal canister might compromise the long-term radionuclide retention of the clay-engineered barriers.

September, 2012 | DOI: 10.1016/j.clay.2012.06.011

Title: Study of Oxygen Reactivity in La1-x Sr (x) CoO3-delta Perovskites for Total Oxidation of Toluene
Author(s): Pereniguez, R; Hueso, JL; Gaillard, F; Holgado, JP; Caballero, A
Source: Catalysis Letters, 142 (2012) 408-416

abstract | fulltext

The total oxidation of toluene is studied over catalytic systems based on perovskite with general formula AA′CoO 3-δ (A = La, A′ = Sr). The systematic and progressive substitution of La 3+ by Sr 2+ cations in the series (La 1-xSr xCoO 3-δ system) of the perovskites have been studied to determine their influence in the final properties of these mixed oxides and their corresponding reactivity performance for the total oxidation of toluene as a model volatile organic compound with detrimental effects for health and environment. The structure and morphology of the samples before and after reaction have been characterized by XRD, BET and FE-SEM techniques. Additional experiments of temperature programmed desorption of O 2 in vacuum and reduction in H 2 were also performed to identify the main surface oxygen species and the reducibility of the different perovskites. It is remarkable that the La 1-xSr xCoO 3-δ series presents better catalytic performance for the oxidation of toluene, with lower values for the T 50 (temperature of 50 % toluene conversion) than the previously studied LaNi 1-yCoyO 3 series.

April, 2012 | DOI: 10.1007/s10562-012-0799-z

Title: Synthesis of a TiCN–SiC polyhedron and elongated crystals nanopowder at low nitrogen concentration
Author(s): Engstrom, A; Mouzon, J; Cordoba, JM; Tegman, R; Antti, ML
Source: Materials Letters, 81 (2012) 148-150

abstract | fulltext

At room temperature diluted TiCl4 and CCl4 were reduced by sodium particles and mixed with a polycarbomethylsilane (PCS) solution to yield a precursor. It was dried and subsequently annealed at 1300 °C, 1400 °C and 1450 °C in a tube furnace using argon with 10 ppm N2. After the 1450 °C annealing a nanocrystalline powder of TiC0.5N0.5–SiC polyhedron and elongated crystals was obtained. At the low nitrogen concentration during annealing a gradual nitration is proposed. It is promoted by carbon gaseous species, precursor oxidation, a sufficient temperature and a summarised nitrogen surplus compared to the titanium and carbon amount.

August, 2012 | DOI: 10.1016/j.matlet.2012.04.071

Title: Novel approaches to flexible visible transparent hybrid films for ultraviolet protection
Author(s): Calvo, ME; Smirnov, JRC; Miguez, H
Source: Journal of Polymer Science Part B-Polymer Physics, 50 (2012) 945-956

abstract | fulltext

Herein, we present an overview of the most recent achievements and innovations regarding the development of flexible visible transparent films for selective ultraviolet (UV) shielding, with focus on those based on hybrid inorganic-organic materials. The main synthetic paths used nowadays to ensure a high degree of protection are reviewed. Polymers containing organic UV absorbing molecules, hybrid mixtures of polymers and nanoparticles, and the recently introduced series of structures displaying structural color, are identified as the three main types of materials used for this purpose. The use of biocompatible and flexible films to achieve spectrally selective UV protection can find applications in a wide diversity of fields such as photo-treatment of skin diseases, food and beverage packing, and storage of cosmetics. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 In this review, the different approaches taken to obtain flexible and transparent films that block ultraviolet radiation based on the use of hybrid materials are covered. The synthetic pathways that lead to films that can shield against UV radiation either by absorption or by interference are described.

July, 2012 | DOI: 10.1002/polb.23087

Title: Influence of plasma-generated negative oxygen ion impingement on magnetron sputtered amorphous SiO2 thin films during growth at low temperatures
Author(s): Macias-Montero, M; Garcia-Garcia, FJ; Alvarez, R; Gil-Rostra, J; Gonzalez, JC; Cotrino, J; Gonzalez-Elipe, AR; Palmero, A
Source: Journal of Applied Physics, 111 (2012) 054312 (6 pages)

abstract | fulltext

Growth of amorphous SiO2 thin films deposited by reactive magnetron sputtering at low temperatures has been studied under different oxygen partial pressure conditions. Film microstructures varied from coalescent vertical column-like to homogeneous compact microstructures, possessing all similar refractive indexes. A discussion on the process responsible for the different microstructures is carried out focusing on the influence of (i) the surface shadowing mechanism, (ii) the positive ion impingement on the film, and (iii) the negative ion impingement. We conclude that only the trend followed by the latter and, in particular, the impingement of O- ions with kinetic energies between 20 and 200 eV, agrees with the resulting microstructural changes. Overall, it is also demonstrated that there are two main microstructuring regimes in the growth of amorphous SiO2 thin films by magnetron sputtering at low temperatures, controlled by the amount of O2 in the deposition reactor, which stem from the competition between surface shadowing and ion-induced adatom surface mobility.

March, 2012 | DOI: 10.1063/1.3691950

Title: Nanoscale mechanically induced structural and electrical changes in Ge 2Sb 2Te 5 films
Author(s): Cecchini, R; Benitez, JJ; Sanchez-Lopez, JC; Fernandez, A
Source: Journal of Applied Physics, 111 (2012) 016101 (3 pages)

abstract | fulltext

We demonstrate that the microstructure and electrical properties of Ge2Sb2Te5 films can be changed by a nanoscale mechanical process. Nanoscratching is used to define modified areas onto an as-deposited crystalline Ge2Sb2Te5 film. Scanning tunneling microscopy measurements show that the modified areas have a very low electrical conductivity. Micro-Raman measurements indicate that the mechanically induced microstructural changes are consistent with a phase transformation from crystalline to amorphous, which can be reversed by laser irradiation.

January, 2012 | DOI: 10.1063/1.3673592

Title: Aluminum solubility in TiO2 rutile at high pressure and experimental evidence for a CaCl2-structured polymorph
Author(s): Escudero, A; Langenhorst, F; Muller, WF
Source: American Mineralogist, 97 (2012) 1075-1082

abstract | fulltext

Aluminum incorporation into TiO 2 has been studied in the TiO 2-Al 2O 3 system as a function of pressure at temperatures of 900 and 1300 °C using commercial Al 2TiO 5 nanopowder as starting material. A new orthorhombic TiO 2 polymorph with the CaCl 2 structure has been observed in the recovered samples synthesized from 4.5 to 7 GPa and 900 °C and from 2.5 to 7 GPa at 1300 °C. The phase transition to the α-PbO 2 type TiO 2 phase takes place between 7 and 10 GPa at both temperatures. Two mechanisms of Al incorporation in TiO 2 rutile have been observed in the recovered samples. The substitution of Ti 4+ by Al 3+ on normal octahedral sites is dominant at lower pressures. High pressure induces the incorporation of Al 3+ into octahedral interstices of the rutile structure, which is responsible for an orthorhombic distortion of the TiO 2 rutile structure and gives rise to a (110) twinned CaCl 2 type structure. This phase is probably a result of temperature quench at high pressure. Aluminum solubility in TiO 2 increases with increasing pressure. TiO 2 is able to accommodate up to 9.8 wt% Al 2O 3 at 7 GPa and 1300 °C. Temperature has a large effect on the aluminum incorporation in TiO 2, especially at higher pressures. High pressure has a strong effect on both the chemistry and the microstructure of Al-doped TiO 2. Enhanced aluminum concentration in TiO 2 rutile as well as TiO 2 grains with a microstructure consisting of twins are a clear indication of high-pressure conditions.

July, 2012 | DOI: 10.2138/am.2012.4049

Title: Incorporation of Si into TiO2 phases at high pressure
Author(s): Escudero, A; Langenhorst, F
Source: American Mineralogist, 97 (2012) 524-531

abstract | fulltext

Silicon incorporation in TiO 2 phases at increasing pressures until 20 GPa at 1300 °C has been studied by XRD and TEM. Rutile is the stable Si-doped TiO 2 phase until at least 7 GPa, transforming into α-PbO 2 structured TiO2 between 7 and 10 GPa. The further transformation to the TiO 2 polymorph with the baddeleyite structure, akaogiite, has not been observed on the quenched samples. XRD and TEM-EDX data suggest that the Si-doped TiO 2 akaogiite polymorph is non-quenchable and reverts to a-PbO2 structured TiO 2 when releasing the pressure. This transformation gives rise to α-PbO 2 structured TiO 2 grains decorated with p fringes stacking faults. Silicon solubility in TiO 2 phases increases with increasing the synthesis pressure until 16 GPa, implying the substitutional solid solution to be the mechanism of solubility. The influence of the dopants on the stability of the rutile and the α-PbO2 structured TiO 2 has also been analyzed.

April, 2012 | DOI: 10.2138/​am.2012.3941

Title: Changes on the nanostructure of cementitius calcium silicate hydrates (C-S-H) induced by aqueous carbonation
Author(s): Morales-Florez, V; Findling, N; Brunet, F
Source: Journal of Materials Science, 47 (2012) 764-771

abstract | fulltext

The nanostructure of the main binding phase of the hydrated cements, the calcium silicate hydrates (C–S–H), and their structural changes due to aqueous carbonation have been characterized using TEM, nitrogen physisorption, and SAXS. Synthetic C–S–H has been used for this purpose. Two different morphologies were identified, similar to the high density and low density C–S–H types. When submitting the sample to a CO2 flux, the low density phase was completely carbonated. The carbonation by-products, calcium carbonate, and silica gel were also identified and characterized. The precipitation of the silica gel increased the specific surface area from 95 to 132 m2/g, and its structure, formed by particles of ~5 nm typical radius, was observed by small angle X-ray scattering. In addition, the resistance of the high density C–S–H to carbonation is reported, and the passivating effect of the precipitated calcium carbonate is also discussed. Finally, the results have been compared with carbonation features observed in Portland cement carbonated experimentally at downhole conditions.

January, 2012 | DOI: 10.1007/s10853-011-5852-6

Centro de Investigaciones Científicas Isla de la Cartuja. C/Américo Vespucio, 49 - 41092 Sevilla (España)
Tel.: [+34] 954489527 | Fax: [+34] 954460165 | buzon@icmse.csic.es