Menú secundario

Scientific Papers in SCI



2019


Química de Superficies y Catálisis

Montmorillonite-stabilized gold nanoparticles for nitrophenol reduction

Chenouf, M; Megias-Sayago, C; Ammari, F; Ivanova, S; Centeno, MA; Odriozola, JA
Comptes Rendus Chimie, 22 (2019) 621-627

Show abstract ▽

Two gold-based catalysts were obtained by Au chemical reduction of the HAuCl(4 )precursor. The resulting nanoparticles were stabilized and immobilized on montmorillonite (Mt) and montmorillonite-ceria (Mt/CeO2). All prepared catalysts were active in 4-nitrophenol to aminophenol reduction at room temperature. Synergy between montmorillonite and ceria is postulated in such a way that the montmorillonite phase hinders particle growth either by influencing the nucleation behavior of gold or by increasing the number of nucleation sites and raising the overall dispersion. The role of the ceria support, on the other hand, may be associated with the 4-NP adsorption at the ceria-gold interface, stabilizing the reaction intermediate and hence lowering the activation barrier for the reduction of 4-NP to 4-AP. 


September, 2019 | DOI: 10.1016/j.crci.2019.07.005

Materiales de Diseño para la Energía y Medioambiente

Correlation of Structure and Performance of Hard Carbons as Anodes for Sodium Ion Batteries

Gomez-Martin, A; Martinez-Fernandez, J; Ruttert, M; Winter, M; Placke, T; Ramirez-Rico, J
Chemistry of Materials, 31 (2019) 7288-7299

Show abstract ▽

Hard carbons are the material of choice as negative electrode in sodium ion batteries. Despite being extensively studied, there is still debate regarding the mechanisms responsible for storage in low- and high-potential regions. This work presents a comprehensive approach to elucidate the involved storage mechanisms when Na ions insert into such disordered structures. Synchrotron X-ray total scattering experiments were performed to access quantitative information on atomic ordering in these materials at the nanoscale. Results prove that hard carbons undergo an atomic rearrangement as the graphene layers cross-link at intermediate temperatures (1200-1600 degrees C), resulting in an increase of the average interplanar distance up to 1400 degrees C, followed by a progressive decrease. This increase correlates with the positive trend in the reversible capacity of biomass-derived carbons when processed up to 1200-1600 degrees C due to an increased capacity at low potential (<= 0.1 V vs Na/Na+). A decrease in achievable sloping capacity with increasing heat-treatment temperature arises from larger crystalline domains and a lower concentration of defects. The observed correlation between structural parameters and electrochemical properties clearly supports that the main storage of Na ions into a hard-carbon structure is based on an adsorption-intercalation mechanism.


September, 2019 | DOI: 10.1021/acs.chemmater.9b01768

Química de Superficies y Catálisis

Noble Metal Supported on Activated Carbon for "Hydrogen Free" HDO Reactions: Exploring Economically Advantageous Routes for Biomass Valorisation

Jin, W; Santos, JL; Pastor-Perez, L; Gu, S; Centeno, MA; Reina, TR
Chemcatchem (2019) 4434-4441

Show abstract ▽

An innovative route for bio‐compounds upgrading via “hydrogen‐free” hydrodeoxygenation (HDO) is proposed and evaluated using guaiacol as a model compound in a high‐pressure batch reactor. Experimental results showed that noble metal supported on activated carbon catalysts are able to conduct tandem multiple steps including water splitting and subsequent HDO. The activity of Ru/C catalyst is superior to other studied catalysts (i. e. Au/C, Pd/C and Rh/C) in our water‐only HDO reaction system. The greater dispersion and smaller metal particle size confirmed by the TEM micrographs accounts for the better performance of Ru/C. This material also presents excellent levels of stability as demonstrated in multiple recyclability runs. Overall, the proposed novel approach confirmed the viability of oxygenated bio‐compounds upgrading in a water‐only reaction system suppressing the need of external H2 supply and can be rendered as a fundamental finding for the economical biomass valorisation to produce added value bio‐fuels.


August, 2019 | DOI: 10.1002/cctc.201900841

Structural and compositional analysis of Co-based coatings after catalytic tests for the sodium borohydride hydrolysis

Beltran, AM
Materials Research Express, 6 (2019) art. 085511

Show abstract ▽

The use of Co-based catalysts for the sodium borohydride hydrolysis for hydrogen production is a well-known process as a source of clean energy, although its mechanisms are still under discussion. With the aim of acquiring a deeper knowledge about this catalytic process, three different catalysts (Co, CoC and CoB) were deposited as a thin film layer by magnetron sputtering onto a polymeric membrane, used as a substrate and analyzed by advance transmission and scanning-transmission electron microscopy techniques (STEM). Structural and compositional characterizations, by electron energy loss spectroscopy (EELS), have been performed on the coatings before and after their use as catalysts on the sodium borohydride reaction for 90 min, to check the production of hydrogen. Results have shown the formation of CoxB nanoflakes and other Co-based compounds over the catalysts and related to their catalytic activity. Knowing the changes in the structure and composition of the catalysts is key to understanding their catalytic behavior, activity and durability. Among the analyzed catalysts, the Co-C presents better activity during the first cycles, which is related to a larger formation of CoxB.


August, 2019 | DOI: 10.1088/2053-1591/ab1e27

Materiales para Bioingeniería y Regeneración Tisular

MTA HP Repair stimulates in vitro an homogeneous calcium phosphate phase coating deposition

Jiménez-Sánchez, M.D.C.; Segura-Egea, J.J.; Díaz-Cuenca, A.
Journal of Clinical and Experimental Dentistry, 11 (2019) e322-e326

Show abstract ▽

Background: To study the mineralization capacity in vitro of the bioceramic endodontic material MTA HP Repair. Material and Methods: Bioactivity evaluation in vitro was carried out, by soaking processed cement disk in simulated body fluid (SBF) during 168 h. The cement surface was studied by Fourier transform infrared spectroscopy (FTIR), field emission gun scanning electron microscopy (FEG-SEM) and energy dispersive X-ray analysis (EDX). Release to the SBF media of ionic degradation products was monitored using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Results: FT-IR showed increasing formation of phosphate phase bands at 1097, 960, 607 and 570 cm -1 with prolonged SBF soaking. FEG-SEM analysis reveals that HP produces a effectively surface covering consisting in homogeneous spherical phosphate phase aggregates with an average diameter of 0.5 -1 .0 μm. EDX analysis comparing un-treated (hydrated), 24 h and 72 h SBF treated surfaces of MTA HP Repair revealed phosphate deposition after 24 h, with high phosphorous/silicon element ratio signal measured after 24 h, indicating a very high phosphate phase deposition for this material. Conclusions: The study shows that MTA HP Repair produces a quick and effective bioactive response in vitro in terms of crystalline calcium phosphate surface coating formation. The high bioactive response of MTA HP Repair makes it an interesting candidate for endodontic use as repair cement. 


August, 2019 | DOI: 10.4317/jced.55661

 

 

 

 

 

icms